156 research outputs found

    Attribute Multiset Grammars for Global Explanations of Activities

    Get PDF

    DDLSTM: Dual-Domain LSTM for Cross-Dataset Action Recognition

    Get PDF
    Domain alignment in convolutional networks aims to learn the degree of layer-specific feature alignment beneficial to the joint learning of source and target datasets. While increasingly popular in convolutional networks, there have been no previous attempts to achieve domain alignment in recurrent networks. Similar to spatial features, both source and target domains are likely to exhibit temporal dependencies that can be jointly learnt and aligned. In this paper we introduce Dual-Domain LSTM (DDLSTM), an architecture that is able to learn temporal dependencies from two domains concurrently. It performs cross-contaminated batch normalisation on both input-to-hidden and hidden-to-hidden weights, and learns the parameters for cross-contamination, for both single-layer and multi-layer LSTM architectures. We evaluate DDLSTM on frame-level action recognition using three datasets, taking a pair at a time, and report an average increase in accuracy of 3.5%. The proposed DDLSTM architecture outperforms standard, fine-tuned, and batch-normalised LSTMs.Comment: To appear in CVPR 201

    Action Recognition from Single Timestamp Supervision in Untrimmed Videos

    Get PDF
    Recognising actions in videos relies on labelled supervision during training, typically the start and end times of each action instance. This supervision is not only subjective, but also expensive to acquire. Weak video-level supervision has been successfully exploited for recognition in untrimmed videos, however it is challenged when the number of different actions in training videos increases. We propose a method that is supervised by single timestamps located around each action instance, in untrimmed videos. We replace expensive action bounds with sampling distributions initialised from these timestamps. We then use the classifier's response to iteratively update the sampling distributions. We demonstrate that these distributions converge to the location and extent of discriminative action segments. We evaluate our method on three datasets for fine-grained recognition, with increasing number of different actions per video, and show that single timestamps offer a reasonable compromise between recognition performance and labelling effort, performing comparably to full temporal supervision. Our update method improves top-1 test accuracy by up to 5.4%. across the evaluated datasets.Comment: CVPR 201

    Who's Better? Who's Best? Pairwise Deep Ranking for Skill Determination

    Get PDF
    We present a method for assessing skill from video, applicable to a variety of tasks, ranging from surgery to drawing and rolling pizza dough. We formulate the problem as pairwise (who's better?) and overall (who's best?) ranking of video collections, using supervised deep ranking. We propose a novel loss function that learns discriminative features when a pair of videos exhibit variance in skill, and learns shared features when a pair of videos exhibit comparable skill levels. Results demonstrate our method is applicable across tasks, with the percentage of correctly ordered pairs of videos ranging from 70% to 83% for four datasets. We demonstrate the robustness of our approach via sensitivity analysis of its parameters. We see this work as effort toward the automated organization of how-to video collections and overall, generic skill determination in video.Comment: CVPR 201

    Play It Back: Iterative Attention for Audio Recognition

    Full text link
    A key function of auditory cognition is the association of characteristic sounds with their corresponding semantics over time. Humans attempting to discriminate between fine-grained audio categories, often replay the same discriminative sounds to increase their prediction confidence. We propose an end-to-end attention-based architecture that through selective repetition attends over the most discriminative sounds across the audio sequence. Our model initially uses the full audio sequence and iteratively refines the temporal segments replayed based on slot attention. At each playback, the selected segments are replayed using a smaller hop length which represents higher resolution features within these segments. We show that our method can consistently achieve state-of-the-art performance across three audio-classification benchmarks: AudioSet, VGG-Sound, and EPIC-KITCHENS-100.Comment: Accepted at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 202

    Activity Analysis; Finding Explanations for Sets of Events

    Get PDF
    Automatic activity recognition is the computational process of analysing visual input and reasoning about detections to understand the performed events. In all but the simplest scenarios, an activity involves multiple interleaved events, some related and others independent. The activity in a car park or at a playground would typically include many events. This research assumes the possible events and any constraints between the events can be defined for the given scene. Analysing the activity should thus recognise a complete and consistent set of events; this is referred to as a global explanation of the activity. By seeking a global explanation that satisfies the activity’s constraints, infeasible interpretations can be avoided, and ambiguous observations may be resolved. An activity’s events and any natural constraints are defined using a grammar formalism. Attribute Multiset Grammars (AMG) are chosen because they allow defining hierarchies, as well as attribute rules and constraints. When used for recognition, detectors are employed to gather a set of detections. Parsing the set of detections by the AMG provides a global explanation. To find the best parse tree given a set of detections, a Bayesian network models the probability distribution over the space of possible parse trees. Heuristic and exhaustive search techniques are proposed to find the maximum a posteriori global explanation. The framework is tested for two activities: the activity in a bicycle rack, and around a building entrance. The first case study involves people locking bicycles onto a bicycle rack and picking them up later. The best global explanation for all detections gathered during the day resolves local ambiguities from occlusion or clutter. Intensive testing on 5 full days proved global analysis achieves higher recognition rates. The second case study tracks people and any objects they are carrying as they enter and exit a building entrance. A complete sequence of the person entering and exiting multiple times is recovered by the global explanation
    corecore