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Abstract
This paper presents a method for assessing skill from

video, applicable to a variety of tasks, ranging from surgery
to drawing and rolling pizza dough. We formulate the prob-
lem as pairwise (who’s better?) and overall (who’s best?)
ranking of video collections, using supervised deep ranking.
We propose a novel loss function that learns discriminative
features when a pair of videos exhibit variance in skill, and
learns shared features when a pair of videos exhibit compa-
rable skill levels. Results demonstrate our method is appli-
cable across tasks, with the percentage of correctly ordered
pairs of videos ranging from 70% to 83% for four datasets.
We demonstrate the robustness of our approach via sensi-
tivity analysis of its parameters.

We see this work as effort toward the automated organi-
zation of how-to video collections and overall, generic skill
determination in video.

1. Introduction
How-to videos on sites such as YouTube and Vimeo,

have enabled millions to learn new skills by observing oth-
ers more skilled at the task. From drawing to cooking and
repairing household items, learning from videos is nowa-
days a commonplace activity. However, these loosely or-
ganized collections normally contain a mixture of contrib-
utors with different levels of expertise. The querying per-
son needs to decide who is better and who to learn from.
Furthermore, the number of how-to videos is only likely to
increase, fueled by more cameras recording our daily lives.
An intelligent agent that is able to assess the skill of the sub-
ject, or rank the videos based on the skill displayed, would
enable us to delve into the wealth of this on-line resource.

In this work, we attempt to determine skill for a variety
of tasks from their video recordings. We base this work on
two assumptions, first - for tasks where human observers
consistently label one video as displaying more skill than
another, there is enough information in the visual signal to
automate that decision; and second - the same framework
for determining skill can be used for a variety of tasks rang-
ing from surgery to drawing and rolling pizza dough.

Who's Better?

Who's Best?
Expert

Novice

~~

> ~~

>

Figure 1. Determining skill in video. Who’s Better? (Top): pair-
wise decisions of videos containing the same task, performed with
varying or comparable levels of skill. Who’s Best? (Bottom):
ranking learned from pairwise decisions.

We propose to determine skill using a pairwise deep
ranking model, which characterizes the difference in skill
displayed between a pair of videos, where one is ranked
higher than the other by human annotators (Fig 1). We use
a Siamese architecture where each stream is made up of a
two-stream (spatial and temporal) convolutional neural net-
work (2S-CNN). This Siamese architecture is trained using
a novel ranking loss function that considers the extent of the
task within the video, and includes pairs of videos where the
skill level is indistinguishable. By assigning videos a rela-
tive score of skill for the given task, we can predict a skill
ranking for a set of videos.

Our main contributions are as follows: i) We present the
first method to determine skill in videos for a wide variety



of tasks. ii) We propose a novel ranking loss function which
considers the extent of the video and incorporates pairwise
similarities in training. This loss function outperforms the
standard ranking loss on all datasets by up to 5%. iii) We
present pairwise skill annotations for three datasets, two of
which are newly recorded. iv) We evaluate our approach on
four datasets (two public); one surgical - for which there is
authoritative expert ranking, another on rolling pizza dough,
as well as two newly introduced datasets for the tasks of
drawing and using chopsticks. Newly recorded datasets and
annotations are available from the authors’ webpages.

2. Related Work

In this section, we review skill determination works in
video, primarily for surgical tasks and within sports. We
relate this work to the new surge for utilizing collections
of how-to instructional videos. Finally, we introduce deep
ranking approaches, on which our method is based.

Skill Determination. There have been few prior works on
automatically determining skill from video. The majority of
these works are focused on surgical tasks [20, 27, 28, 36,
37, 39, 40, 41], due to the intensive training needs in this
area. For instance, Sharma et al. [27] use motion textures
to predict the OSATS criteria: a measure of skill specific to
the surgical domain. In [39], Zia et al. rely on the repeti-
tive nature of surgical tasks, using the entropy of repeated
motions to identify different skill levels. Malpani et al. [20]
use a combination of video and kinematic data to rank per-
formance in two surgical tasks. However, they decompose
each task into a sequence of actions, and design specific
features for performance evaluation of surgical maneuverer,
which makes this inapplicable to non-surgical tasks. Gen-
erally, the high specialty of the tasks and methods involved
in surgery make these approaches difficult to generalize.

Many of these methods take a coarse approach to iden-
tifying skill, splitting participants into categories of novice
and expert [40]. Often skill labels are determined by par-
ticipants’ previous experience, instead of their performance
in individual videos [11, 40]. We aim however, to rank the
performance in each video, instead of classifying the video,
or all of a participant’s videos, as expert or novice.

A work that utilizes ranking for surgical tasks is that of
Zhang et al. [37]. It uses relative Hidden Markov Models
to evaluate human motion skill by obtaining a ranking be-
tween pairs. This work is somewhat limited by the ground
truth data: the assumption is that a video recorded at a later
date will capture better performances than a participant’s
earlier recording. Thus, skill is only compared within a par-
ticipant’s performances.

There is also some skill assessment work in the domain
of sport [4, 7, 12, 17, 23, 24, 25]. However, many of these
works are not generalizable to domains outside sports as

they either craft features specific to a sport, such as basket-
ball [4, 17], or focus on quality of motion [7, 12, 23, 24].
The most relevant of these works is from Pirsiavash et
al. [25], who present a general method for assessing the
quality of actions. This is done by estimating human body
pose with a skeleton model in order to predict the score of
actions, again in sports videos. However, quality of motion
on its own is not an essential condition to determine skill.
For example, moving a brush in an artistic manner is not a
sufficient measure for painting skills.

How-To Videos. Related to skill determination are works
on instructional videos [2, 8, 3, 18], that study videos of dif-
ferent people performing the same activity. However, none
of these works determine skill from these videos, focusing
instead on aligning the steps undertaken to complete the
task [2] and the object states and manipulations that occur
during the task [3]. Kim et al. [18] evaluate the semantic
similarity of action units to determine if two people are per-
forming the same sub-activity, however this is not capable
of assessing the skill within the same task or sub-tasks.

Deep Ranking. The most widely used learning to rank for-
mulation is pairwise ranking. The method aims to minimize
the average number of incorrectly ordered pairs of elements
in a ranking, by training a binary classifier to decide which
element in a pair should be ranked higher. This formulation
was used by Joachims in RankSVM [15], where a linear
SVM is used to learn a ranking. It was originally used to
learn search engine retrieval functions from click-through
data, however it has been adopted in other ranking applica-
tions, including ranking relative attributes in images [22].

Pairwise ranking has also been used in deep learning,
first by Burges et al. [5] with RankNet. For instance, Yao et
al. [33] use a pairwise deep ranking model to perform high-
light detection in egocentric videos using pairs of highlight
and non-highlight segments. They use a ranking form of
hinge loss as opposed to the binary cross entropy loss used
in RankNet. In our paper we base our ranking loss on the
pairwise margin loss used by Yao et al., but with several
novel additions, including a pairwise similarity loss.

Other non-pairwise methods for deep ranking such as
list-wise ranking [6] have been proposed, yet are less
frequently used compared to the pairwise approach, un-
less optimizing for a specific evaluation metric such as
NDCG [14].

3. Learning to Determine Skill

In this section we first give an overview of the skill de-
termination problem and the Siamese two-stream CNN ar-
chitecture we use to determine skill. We then present our
novel additions to the pairwise margin loss function used to
train both streams of the CNN.



shared 
weights

Spatial TSN

Spatial TSN

a) Video 1 Video 2> b) Segments c) Snippets d) Network e) Losses

Pairwise ranking 

Pairwise similarity

Figure 2. Training for skill determination. a) We consider all pairs of videos, where the first is showing a higher level of skill Ψ, or their skill
is comparable Φ, and divide these into N splits to make use of the entire video sequence. b) Paired splits are then divided up into 3 equally
sized paired segments as in [32]. c) TSN selects a snippet randomly from each segment. For the spatial network this is a single frame, for
the temporal network this is a stack of 5 dense horizontal and vertical flow frames. d) Each snippet is fed into a Siamese architecture of
shared weights, for both spatial and temporal streams, of which only the spatial is shown here. e) The score from each split is either fed to
the proposed loss functions: ranking/similarity which compute the margin ranking loss based on the pair’s label.

3.1. Problem Definition

Our goal is to learn models for ranking skill in dif-
ferent tasks. Given a task, we have a set of K videos
P = {pk, 1 ≤ k ≤ K}, from multiple people, each per-
forming the task one or more times. We consider each video
independently, as people differ in the skill they display in
each video, even across multiple runs. We are thus inter-
ested in ranking relative skill per video instead of accumu-
lating a score per person.

E(pi, pj) =


1 pi shows higher skill than pj
−1 pj shows higher skill than pi
0 no skill preference

(1)

Note that according to Eq. 1, E(pi, pj) = −E(pj , pi), we
thus need to only obtain one annotation for each pair. We
explain how these annotations are obtained in Section 4.1.

3.2. Time as a Measure of Skill

A naive way to approach measuring skill is to use time
of completion, as finishing a task faster (or slower) could
imply a higher level of skill. However, from the JIGSAWS
dataset [11] we prove that time is not sufficient. Although
there is some correlation between score and time in the Knot
Tying task (ρ = 0.72), there is little correlation in the Nee-
dle Passing (ρ = 0.23) and Suturing (ρ = 0.34) tasks.
Therefore, although time can be useful in some tasks, it is
not a general or reliable method for skill determination. We
thus propose a method for skill determination that is inde-
pendent of time of completion.

3.3. Temporal Segment Networks as Architecture

Tasks differ in how skill can be demonstrated. In this
respect we identify two main sources of relevant informa-
tion. The first is the quality and type of motions used. The
second is the effect on the environment captured through
the appearance of the task. We thus utilize two stream con-
volutional neural networks (2S-CNN) for skill determina-
tion. Specifically, we base our method on Temporal Seg-
ment Networks (TSN) [32]. We select TSN due to their
state of the art performances on action recognition bench-
marks and ability to model long range temporal structure
and dependencies.

In training TSN, as in [32], we uniformly divide each
input video sequence into three segments, then randomly
sample a single short snippet from each of these segments
(Fig 2b,c). For each iteration in training, our 2S-CNN out-
puts a preliminary prediction of skill for each snippet. This
decision is then pooled across the three snippets, creating
a score per input video. The output to the loss function
(Fig. 2e), in both the spatial and temporal streams, is then
the consensus between selected snippets.

3.4. Pairwise Deep Ranking

We use the pairwise approach for learning to rank. To do
this we build a Siamese version of the two-stream TSN de-
scribed in Section 3.3, with the weights shared across both
sides of the Siamese network (Fig. 2d). Given a pair of
videos, where the first video is ranked higher than the sec-
ond in terms of skill, we want the Siamese network to out-
put a higher score for the first. Formally, we have a set of
pairs Ψ = {(pi, pj);E(pi, pj) = 1} (ref Eq. 1). These two



videos are fed into the separate, but identical, TSNs which
form the Siamese network (Fig 2a). Assuming the TSN out-
puts f(·), our goal is to learn the function f such that we
determine skill, where

f(pi) > f(pj) ∀(pi, pj) ∈ Ψ (2)

To gain an overall rank for all videos, we use a mar-
gin loss layer to evaluate the loss for each pair. The loss
function we use is an approximation to 0-1 ranking er-
ror loss that has been used successfully for other applica-
tions [33, 31];

Lrank1 =
∑

(pi,pj)∈Ψ

max(0,m− f(pi) + f(pj)) (3)

We use m = 1 in our experiments. During training, this
loss function evaluates the violation of the ranking of each
pair of videos and back-propagates the gradient through
the network. This allows the network to learn discrimi-
native features to distinguish between the amount of skill
displayed in different videos.

3.5. Pairwise Deep Ranking with Splits

Traditionally, 2S-CNN are used for action recogni-
tion [29], thus the whole length of the video needs to be
considered once to recognize the undertaken action. In this
work, we are examining skill, which could be understood
from all (or any) parts of the video sequence. To make the
most of the extent of the video sequence, we consider N
uniform splits (Fig. 2a) and evaluate each of the correspond-
ing splits in the loss function. We assume that two videos of
the same task have comparable rate of progression through
the task, and thus compare the temporal splits across a pair
of videos in order. Assume pki is the kth split of video pi,
we extend the skill annotations such that,

E(pki , p
k
j ) = E(pi, pj) ∀k = 1 · · ·N (4)

Our loss function now becomes:

Lrank2 =
∑

(pi,pj)∈Ψ

N∑
k=1

max(0,m−fk(pi)+fk(pj)) (5)

In our experiments, N = 7 was tested. By pairing corre-
sponding splits, we ensure the two videos are compared at a
similar stage of the task performance, while still being able
to deal with videos of different lengths, and therefore more
discriminative features are likely to be learned.

3.6. Pairwise Deep Ranking with Similarity Loss

With the margin loss function in Section 3.4 we only
incorporate pairs where one video is consistently ranked
higher than another. In order to utilize more of the poten-
tial video pairings, we take inspiration from recent works

in domain adaptation [10] by creating a secondary ‘adver-
sarial’ loss where we wish to not distinguish between our
similar pairs. We modify the margin loss to learn features
which map pairs, indistinguishable in terms of skill, to sim-
ilar scores. We thus find the set of pairs with indistinguish-
able skill levels Φ = {(pi, pj);E(pi, pj) = 0} (ref Eq. 1).

The way in which adversarial loss function are com-
monly created is by reversing the gradient, however this
does not work in a ranking problem. In order to learn in-
distinguishable representations we aim for the following:

|f(pi)− f(pj)| ≤ m ≡ |f(pj)− f(pi)| −m ≤ 0 (6)

Therefore, our new loss function for similar pairs becomes:

Lsim =
∑

(pi,pj)∈Φ

N∑
k=1

max(0, |f(pi)− f(pj)| −m) (7)

Resulting in a modified loss function:

Lrank3 = βLrank2 + (1− β)Lsim (8)

AddingLsim into our ranking loss for similarly ranked pairs
not only allows us to utilize extra data pairs in the learning
process, but also encourages the network to learn similar-
ities in skill between similarly ranked videos. We explain
how we get the new set of pairs Φ in Section 4.1.

3.7. Evaluating Skill for a Test Video

Following training, the learned 2S-CNN weights are
used to evaluate the skill for test videos of the same task.
In testing, we uniformly sample σ snippets from each video
pi, again as in [32]. Each snippet pki 1 ≤ k ≤ σ is then fed
into the spatial and temporal TSN independently. The out-
put for each snippet is a score f(pki ) for both spatial fs(pki )
and temporal ft(pki ) streams. To fuse the spatial and tempo-
ral networks for all snippets we take the weighted average
of the outputs,

f(pi) =
1

σ

σ∑
k=1

αfs(p
k
i ) + (1− α)ft(p

k
i ) (9)

where α is the fusion weighting between spatial and tempo-
ral information, and σ is the number of testing snippets.

An overall ranking for a test set is achieved by ordering
all test videos in a descending order based on f(pi).

4. Tasks and Datasets
For evaluation we conduct experiments on tasks from

four datasets - two published and two newly recorded
(Fig. 3). The first is a surgical dataset. Three other datasets
containing daily living tasks are also used, to demonstrate
the generality of the approach. Here we detail the four
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Figure 3. Sample sequences from the four tasks.

datasets, followed by the skill annotations for these datasets.
These datasets and annotations will be combined to form
the new EPIC-Skills 2018 dataset which can be found on
the authors’ webpages.

Surgery. We use the published JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS) dataset [11]. In this
dataset, three surgical procedures are performed by 8 sur-
geons with varying levels of experience. In total, JIGSAWS
consists of 36 trials of Knot Tying, 28 trials of Needle Pass-
ing and 39 trials of Suturing. This dataset contains stereo
recordings, from which we use only one video (right view)
from each sequence.

Dough-Rolling. We use the kitchen-based CMU-MMAC
dataset [9], and select the dough rolling task from the pizza
making activity, as this exhibits varying levels of perfor-
mance across participants. In total, we manually segment
33 Dough-Rolling videos from 33 distinct participants.

Drawing. We introduce a new dataset for drawing, captured
using a stationary camera at a resolution of 1920x1080 and
a frame rate of 60 fps. Participants were given a reference
image to copy. Two reference images were used; a cartoon
of Sonic the Hedgehog and a gray-scale photograph of a
hand. Similarly to the Surgery tasks, both tasks were per-
formed five times each, by four participants.

Chopstick-Using. We also introduce a new dataset for us-
ing chopsticks, captured using the same setup as the Draw-
ing dataset. Each participant was tasked with moving as
many of the beans as possible from one tub to the other
using chopsticks, limited to one minute per trial. Eight par-
ticipants were recruited, each repeated the task five times.

4.1. Skill Annotation

Only the JIGSAWS dataset has existing skill scores. This
was annotated by a surgery expert, out of a maximum score

Task #Vid- #Max %Cons. %Sim. Total
eos Pairs Pairs Pairs Pairs

Surgery (KT) 36 630 95% 5% 100%
Surgery (NP) 28 378 96% 4% 100%

Surgery (Suturing) 39 701 95% 5% 100%
Dough-Rolling 33 528 34% 18% 52%

Drawing (Sonic) 20 190 62% 37% 99%
Drawing (Hand) 20 190 68% 26% 94%
Chopstick-Using 40 780 69% 10% 79%

Table 1. For the four datasets: #videos, #of pairs (n)(n − 1)/2
with the percentage of consistent pairs in annotations and similar
pairs obtained. KT=Knot Tying, NP=Needle Passing

of 30. In this section, we explain how we obtained skill
ranking for the remaining three datasets using Amazon Me-
chanical Turk (AMT).

We determine the ground truth relative ranking of video
pairs using a similar method to [21], where the authors
demonstrate crowdsourcing yields reliable pairwise com-
parison for skill in surgical tasks. We asked AMT work-
ers to watch pairs of videos simultaneously and select the
video displaying the higher level of skill for the given task.
Each worker was presented with 5 pairs of videos per HIT
from the same task, one of which was a quality control pair
which displayed an obvious difference in skill. Annotators
were asked for strict preferences per pair. We then check
for consensus between different annotators for skill annota-
tion. Each video pair was annotated by four different work-
ers. Only pairs of videos for which all annotators agreed on
their skill order are considered for training in the Lrank loss
function, we refer to these as consistent pairs.

We further check for any discrepancies in the set of
these consistent pairs, by checking for triangular in-
consistencies. Assume E(pi, pj) > 0 and E(pj , pk) > 0,
we check for E(pi, pk) < 0, which would show a
triangular inconsistency in annotations. We do this
by creating a directed graph with P nodes and edges
(pi → pj) ∀ 1 ≤ i, j ≤ K where E(pi, pj) > 0. Cycles in
the graph would indicate a triangular inconsistency, which
we manually resolve. Only a single triangular inconsis-
tency was found in all AMT annotations for the three tasks.
This was in the Dough-Rolling task and was excluded from
training and testing. Similarly, we take the skill scores from
the Surgery dataset and compute all consistent pairs.

As well as the consistent pairs we use in Lrank we also
require similarly ranked pairs for Lsim (Eq. 7). These are
not all the inconsistent pairs, as those may be noisy. We
select similar pairs for training using the directed graph of
all pairs introduced above. We define separation between a
pair of videos to be the difference in the length of the longest
walk from any source node in the graph. We consider pairs
in the set of inconsistent pairs with a separation of 0 or 1 as



Method
Surgery Dough-Rolling Drawing Chopstick-Using

S T TS S T TS S T TS S T TS

Siamese TSN with Lrank1 64.7 72.8 69.1 77.6 79.4 78.5 75.6 77.4 78.0 67.2 67.9 68.8
Siamese TSN with Lrank2 64.4 73.3 69.0 79.1 80.4 78.5 74.9 81.8 79.1 67.2 69.9 68.8
Siamese TSN with Lrank3 66.4 72.5 70.2 79.5 79.5 79.4 77.6 82.7 83.2 70.8 70.6 71.5

Table 2. Results of 4-fold cross validation on all datasets, for our proposed method with each of our proposed loss functions. For all datasets
Lrank3 outperforms original loss Lrank1. S=Spatial, T=Temporal, TS=Two-Stream

our set of similar pairs.
Table 1 presents statistics on these consistent and simi-

lar pairs. Surgery has a high number of consistent pairs
(> 95%). The pairs in this dataset come from the scores of
a single expert, available with the JIGSAWS dataset, there-
fore pairs are only excluded when two videos have the same
score. For the other tasks, we use the judgments from mul-
tiple AMT workers. Dough-Rolling has the lowest percent-
age of consistent pairs, as many were considered compara-
ble in skill by human annotators. This is likely due to the
nature of the task, thus many subjects do manage a similar
level of performance. For Drawing and Chopstick-Using,
the number of consistent pairs is 60− 70%.

5. Experiments
For all datasets, we use a four-fold cross validation to re-

port results. For each fold, the pairs between three quarters
of the videos are used in training, and we then test on all re-
maining pairs. This includes pairs where neither video has
been used in a pair for training as well as pairs where one
video has been used in training within a different pairing.

5.1. Implementation Details

To extract the optical flow frames for the temporal net-
work we use the TV − L1 algorithm [34]. We use mini-
batch stochastic gradient descent with a batch size of 128
and a momentum of 0.9. Both the spatial and temporal net-
work use the AlexNet [19] architecture as we found this
gave better results with a shorter training time than the BN-
Inception [13] network original used in TSN. Both sides of
each Siamese network are initialized with network weights
from pre-trained ImageNet models. In the spatial network
the learning rate begins as 1E-3 and decreases by a factor of
10 every 1.5K iterations, with the learning process finishing
after 3.5K iterations. The temporal network’s learning rate
is initialized as 5E-3, decreasing by a factor of 10 after 10K
iterations and after 16K iterations, with learning ending af-
ter 18K iterations. We set β (Eq. 8) to 0.5 in all experimental
results after initial assessment.

To avoid over-fitting, we use the same data augmentation
techniques as Wang et al. [32], namely horizontal flipping,
corner cropping and scale jittering on the 340x256 pixels

RGB and optical flow images. The cropped regions are
224x224 pixels for network training. We also use dropout
layers with the fully connected layers, ratios used are 0.5
for both streams.

5.2. Evaluation Metric

To evaluate our method, we use pairwise precision on
the rankings produced by each testing fold. Pairwise preci-
sion is defined as the percentage of correctly ordered pairs
in a ranking. We say a pair is correctly ordered if for a
pair (pi, pj) where E(pi, pj) = 1 in the ground truth, the
method outputs f(pi) > f(pj).

5.3. Results

In Table 2 we show our results from four-fold cross-
validation on each of the four datasets with each loss func-
tion. We report results with σ = 25 as in [32], and for
α = 0.4 (Eq. 9) as in [29, 32]. Below we test the sen-
sitivity of these results to the values of α. From this Ta-
ble 2, we can see that our proposed loss function Lrank3

outperforms the standard margin loss function Lrank1 on
all combinations of modality and dataset. We also see an
improvement from Lrank2 over all but the temporal result
in Surgery and Dough-Rolling. This improvement is par-
ticularly noticeable in the two-stream results for Drawing
(79.1% to 83.2%) and Chopstick-Using (68.8% to 71.5%).
The inclusion of similar pairs with Lsim in the training pro-
cess has the largest impact on training on the spatial net-
work, where the results for skill determination are gener-
ally weaker across tasks. Lsim increases the spatial net-
work performance resulting in larger improvements in the
two-stream result.

From the results in Table 2 we can also conclude that the
temporal features are in general more useful for determining
skill for the presented tasks, with the temporal result out-
performing the spatial result in all but the Chopstick-Using
task. Although, we do manage to reduce this gap with our
additional loss Lsim from Section 3.4. This implies the mo-
tions performed are more important for determining skill
than the current state or appearance of the task (captured
in the spatial stream). We note that the largest difference
between the two streams is in the Surgery tasks. This is
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Figure 5. The accuracy achieved when adding snippets in testing, from the start (left), end
(middle) and randomly (right).

because these tasks require quick smooth motions, putting
minimal stress on the surrounding areas. Hence, while the
end result of each stage is visually similar, the motions af-
fect the scoring significantly.

Fusion Parameter. We assess the sensitivity of our results
to the late fusion weighting α in Equation 9. We test α
values from 0 to 1 at intervals of 0.1 for all datasets, as
shown in Figure 4. For the majority of tasks, the combi-
nation of temporal and spatial modalities is useful, except
the Surgery task which peaks at α = 0, i.e. no information
from the spatial network is included. All tasks benefit from
the contribution of the temporal network, albeit to different
degrees. We also observe that the method is highly resilient
to the value of α, particularly for the Chopstick-Using and
Dough-Rolling tasks.

Number of Snippets in Testing. The results above are re-
ported for σ = 25 (in-line with previous methods), where
the snippets are sampled uniformly from the whole video.
However, it is interesting to examine how much of the video
is needed at test time to gain an accurate evaluation of the
skill displayed in a video. We test our evaluation on a vary-
ing number of consecutive snippets from the start and end of
the video, as well as randomly. Results are shown in Fig. 5.

From Figure 5 we can see that good accuracy can be ob-
tained after only seeing a portion of the video, however a
single frame of the video is insufficient to measure skill,
even if this single frame contains the end result of the task,
and accuracy improves as further snippets are viewed. In-
terestingly, accuracy converges as the number of snippets
continues to increase, for the various tasks and snippet sam-
pling approaches. For instance, the Surgery task achieves
near peak accuracy with the first 20% of the testing snip-
pets, while the last 20% appear redundant. This difference
is intuitive as the start of the Surgery task is more challeng-
ing, while the repetitive nature of the task allows novice
participants to improve by the end.

5.4. Baselines

As there are no generic existing methods for ranking skill
nor performing skill determination for non-surgical tasks,

Method Surgery
Dough-

Drawing
Chopstick-

Rolling Using

RankSVM [16] 65.2 72.0 71.5 76.6
Yao et al. [33] 66.1 78.1 72.0 70.3
Ours 70.2 79.4 83.2 71.5

Table 3. Results of 4-fold cross validation on all datasets, for the
baselines our proposed method with Lrank3.

we use existing ranking methods developed for other ap-
plications. Our first baseline uses RankSVM [15], com-
monly used in ranking problems [22]. We perform four-
fold cross validation on RankSVM with features extracted
from AlexNet trained on ImageNet [19] and C3D trained on
Sports1M [30]. These two results are then combined with
late fusion of α = 0.4. We use the same implementation as
in [16] which can be found on the authors webpage.

The second baseline is Yao et al. [33] who originally per-
formed deep ranking on video to determine highlight seg-
ments. They use pre-extracted features in a fully connected
network to determine segments with the highest potential
highlight score. The features used are from AlexNet and
C3D which are then passed separately into a network with
architecture: F1000-F512-F256-F128-F64-F1 using the
same margin loss in Eq. 3. The results from each network
are then fused using late fusion with α = 0.4. Although
this method was originally developed for a different pur-
pose - binary highlight detection - it uses a general method
of ranking video and is thus used here for comparison.

It is important to note, the only dataset for which skill
evaluation has previously been considered is the Surgery
dataset, though as a regression problem to expert scores.
This approach is not applicable to daily tasks where obtain-
ing objective scoring is much harder than pairwise rank-
ing. Published results on the Surgery dataset either report
Expert/Novice classification [1] or use only the kinematic
data [38] and are therefore not comparable to ours.

Comparative results are available in Table 3. Our method
outperforms both baselines on three of the four tasks.
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Figure 6. The accuracy of each ordered pair by separation between videos in a pair for each task, in the baselines and our method. The
accuracy consistently increases as tested pairs are further in the ground-truth ranking for all datasets.
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Figure 7. Spatial activations for sample frames at varying ranks.

RankSVM performs best on Chopstick-Using. The im-
provement with our method is most significant in the Draw-
ing task with an improvement of 11.2%.

To study where the difference in performance lies, we
show the accuracy for each level of separation between
pairs of each dataset in Figure 6. Assume we have con-
sistent annotation pairings resulting in the partial ranking
pi < pi+1 < ... < pi+n < pj , then we define separation be-
tween pi and pj as n + 1. It is more important that pairs
with high separation be correctly ordered than pairs close
together in the ranking. Figure 6 shows that the significant
improvement of our method, over the baselines, in Surgery
and Drawing is at the mid-level of separation. Although
all methods approach the 100% accuracy for the most sep-
arated pairs, our method approaches this much faster. Al-
ternatively, in the Chopstick-Using task, the only task for
which we perform below one baseline, we have compara-
tive performance in the mid and high separation compared
to RankSVM, only falling below for nearby pairs.

5.5. Visualizing Performance Ranking

A key difficultly of skill determination is capturing the
nuance of the tasks in the learned model. In Fig. 7 we vi-

sualize the top-down attention of the spatial CNN on ex-
ample rankings for three datasets using [26] based on [35].
For each dataset, we show frame-level spatial activations on
four videos with varying levels of skill (best→worst).

From Fig.7 we can see that the trained model is picking
details that correspond to what a human would attend to. In
Dough-Rolling high activations occur on holes in the dough
(1, 3), curved or rolled edges (4) and when using a spoon
(2). High activations occur in Surgery when strain is put
on the material (1, 2), with abnormal needle passes (3) and
when there is loose stitching (4). In Drawing, the model
attends to specific parts of the sketch such as the head and
mouth. The high activations in the Chopstick-Using task
occur on the hand position (3,4), chopstick position (2) and
the bean locations (1,2,3). Further qualitative results are
shown in the supplementary video.

6. Conclusion

In this paper we have presented a method to rank videos
based on the skill that subjects demonstrate. Particularly,
we have proposed a pairwise deep ranking model which uti-
lizes both spatial and temporal streams in combination with
a novel loss to determine and rank skill. We have tested
this method on four separate datasets, two newly created,
and show that our method outperforms the baseline on three
out of four datasets, with all tasks achieving over 70% ac-
curacy. Furthermore, we have explored where the perfor-
mance increase lies and examined our method’s resistance
to changes in parameters. Qualitative figures demonstrate
the approach’s ability to learn tasks’ nuances, while using a
general, task-independent, method.

We see our work as a promising step toward the auto-
mated and objective organization of how-to video collec-
tions and as a framework to motivate more work in skill
determination from video. Further work involves exploring
mid-level fusion between the two streams of the network, as
well as testing on additional and across datasets and tasks.
Acknowledgements: Access to EPIC-Skills 2018 dataset
and annotations available from authors’ webpages. Sup-
ported by an EPSRC DTP and EPSRC GLANCE
(EP/N013964/1).
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