82 research outputs found

    Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci

    Get PDF
    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics

    Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections

    Get PDF
    Integumentary infections like pyoderma represent the main reason for antimicrobial prescription in dogs. Staphylococcus pseudintermedius and Pseudomonas aeruginosa are frequently identified in these infections, and both bacteria are challenging to combat due to resistance. To avoid use of important human antibiotics for treatment of animal infections there is a pressing need for novel narrow-spectrum antimicrobial agents in veterinary medicine. Herein, we characterize the in vitro activity of the novel peptide-peptoid hybrid B1 against canine isolates of S. pseudintermedius and P. aeruginosa. B1 showed potent minimum inhibitory concentrations (MICs) against canine S. pseudintermedius and P. aeruginosa isolates as well rapid killing kinetics. B1 was found to disrupt the membrane integrity and affect cell-wall synthesis in methicillin-resistant S. pseudintermedius (MRSP). We generated 28 analogues of B1, showing comparable haemolysis and MICs against MRSP and P. aeruginosa. The most active analogues (23, 26) and B1 were tested against a collection of clinical isolates from canine, of which only B1 showed potent activity. Our best compound 26, displayed activity against P. aeruginosa and S. pseudintermedius, but not the closely related S. aureus. This work shows that design of target-specific veterinary antimicrobial agents is possible, even species within a genus, and deserves further exploration

    The effect of color type on early wound healing in farmed mink (Neovison vison)

    Get PDF
    Abstract Background Individual differences of mink, including color type, are speculated to affect the course of wound healing, thereby impacting wound assessment and management on the farms, as well as the assessment of wounds in forensic cases. In this study, we examined the effect of color type on early wound healing in farmed mink. Full thickness excisional wounds (2 × 2 cm) were made on the back in 18 mink of the color types Brown, Silverblue and Blue Iris. Gross and microscopic pathology of the wounds was evaluated 2 days post-wounding together with degree of wound size reduction, presence of bacteria and blood analyses. Results Pathological examination on day 2 showed the greatest mean wound size reduction in Brown mink (11.0%) followed by Blue Iris (7.9%) and Silverblue (1.6%). Bacteria were cultured from all wounds, and predominantly Staphylococcus species were recovered in mixed or pure culture. Histopathology from day 2 wounds showed a scab overlying necrotic wound edges, which were separated from underlying vital tissue by a demarcation zone rich in polymorphonuclear leukocytes. Fibroblasts and plump endothelial cells were more numerous in the deeper tissues. Complete blood count parameters were within normal ranges in most cases, however, the mink showed mildly to markedly decreased hematocrit and six mink of the color types Silverblue and Blue Iris showed moderately elevated numbers of circulating segmented neutrophils on day 2. There was a marked increase in concentration of serum amyloid A from day 0 to day 2 in all color types. Conclusions We have described differences in early wound healing between mink of the color types Brown, Silverblue and Blue Iris by use of an experimental wound model in farmed mink. The most pronounced difference pertained to the degree of wound size reduction which was greatest in Brown mink, followed by Blue Iris and Silverblue, respectively

    Multidrug-resistant Escherichia coli from canine urinary tract infections tend to have commensal phylotypes, lower prevalence of virulence determinants and ampC-replicons

    Get PDF
    AbstractMultidrug-resistant Escherichia coli is an emerging clinical challenge in domestic species. Treatment options in many cases are limited. This study characterized MDR E. coli isolates from urinary tract infections in dogs, collected between 2002 and 2011. Isolates were evaluated in terms of β-lactamase production, phylogenetic group, ST type, replicon type and virulence marker profile. Comparisons were made with antibiotic susceptible isolates also collected from dogs with urinary tract infections. AmpC β-lactamase was produced in 67% of the MDR isolates (12/18). Of these, 8 could be specifically attributed to the CMY-2 gene. None of the isolates tested in either group expressed ESBLs. Phylo-group distribution was as expected in the susceptible isolates, with an over representation of the pathogenic B2 phylo-group (67%). In contrast, the phylogenetic background for the MDR group was mixed, with representation of commensal phylo-groups A and B1. The B2 phylo-group represented the smallest proportion (A, B1, B2 or D was 28%, 22%, 11% and 33%, respectively). Virulence marker profiles, evaluated using Identibac® microarray, discriminated between the two groups. Marker sequences for a core panel of virulence determinants were identified in most of the susceptible isolates, but not in most of the MDR isolates. These findings indicate that for MDR isolates, plasmid-mediated AmpC is an important resistance mechanism, and while still capable of causing clinical disease, there is evidence for a shift towards phylogenetic groups of reduced inferred virulence potential. There was no evidence of zoonotic potential in either the susceptible or MDR urinary tract isolates in this study

    Effect of variation in oxytetracycline treatment of Lawsonia intracellularis diahrea in nursery pigs on treatment-efficacy and resistance development

    Get PDF
    A Danish research project, MINIRESIST, investigated the consequences of varying doses and treatment strategies for oxytetracycline treatment of Lawsonia intracellularis diarrhea in nursery pigs. Batches of nursery pigs in five herds were randomly allocated to one of five treatment protocols (batch treatment orally with high, normal and low doses; penwise treatment with normal dose and injection treatment with normal dose). Outcomes, in terms of reduction of L. intracellularis determined by qPCR, growth rate and fecal dry matter content (determined on 30 pigs per batch in 61 batches), and levels of tetracyclineresistant coliforms, and quantification of resistance genes in intestinal content (determined on 15 pigs per batch in 80 batches), were determined and analyzed statistically

    Rikke: Users Manual

    Get PDF

    A multinational survey of companion animal veterinary clinicians: How can antimicrobial stewardship guidelines be optimised for the target stakeholder?

    Get PDF
    Antimicrobial stewardship initiatives are widely regarded as a cornerstone for ameliorating the global health impact of antimicrobial resistance. Within companion animal health, such efforts have largely focused on development and dissemination of antimicrobial stewardship guidelines (ASGs). However, there have been few attempts to understand veterinarian attitudes towards and knowledge of ASGs or to determine how awareness regarding ASGs might best be increased. An online survey regarding ASGs was formulated for veterinarians who treat companion animals. The survey was distributed across 46 European and associated countries between 12 January and 30 June, 2022. In total, 2271 surveys were completed, with 64.9% of respondents (n = 1474) reporting awareness and usage of at least one ASG. Respondents from countries with greater awareness of ASGs tended to report more appropriate use of antimicrobials (Spearman's rank coefficient = 0.6084, P ≤ 0.001), with respondents from countries with country-specific ASGs tending to score highest across both awareness and appropriate use domains. Respondents prioritised guidance around antimicrobial choice (82.0%, n = 1863), duration of treatment (66.0%, n = 1499), and dosage (51.9%, n = 1179) for inclusion in future ASGs, with 78.0% (n = 1776) of respondents preferring ASGs to be integrated into their patient management system. Awareness of ASGs and their use in companion animal veterinary practice appears to be greater than previously reported, with respondents tending to report antimicrobial prescription decision making broadly in line with current clinical recommendations. However, further initiatives aimed at maximising accessibility to ASGs both within countries and individual veterinary practices are recommended. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Cross-Talk between Staphylococcus aureus and Other Staphylococcal Species via the agr Quorum Sensing System

    Get PDF
    Staphylococci are associated with both humans and animals. While most are non-pathogenic colonizers, Staphylococcus aureus is an opportunistic pathogen capable of causing severe infections. S. aureus virulence is controlled by the agr quorum sensing system responding to secreted auto-inducing peptides (AIPs) sensed by AgrC, a two component histidine kinase. agr loci are found also in other staphylococcal species and for Staphylococcus epidermidis, the encoded AIP represses expression of agr regulated virulence genes in S. aureus. In this study we aimed to better understand the interaction between staphylococci and S. aureus, and show that this interaction may eventually lead to the identification of new anti-virulence candidates to target S. aureus infections. Here we show that culture supernatants of 37 out of 52 staphylococcal isolates representing 17 different species inhibit S. aureus agr. The dog pathogen, Staphylococcus schleiferi, expressed the most potent inhibitory activity and was active against all four agr classes found in S. aureus. By employing a S. aureus strain encoding a constitutively active AIP receptor we show that the activity is mediated via agr. Subsequent cloning and heterologous expression of the S. schleiferi AIP in S. aureus demonstrated that this molecule was likely responsible for the inhibitory activity, and further proof was provided when pure synthetic S. schleiferi AIP was able to completely abolish agr induction of an S. aureus reporter strain. To assess impact on S. aureus virulence, we co-inoculated S. aureus and S. schleiferi in vivo in the Galleria mellonella wax moth larva, and found that expression of key S. aureus virulence factors was abrogated. Our data show that the S. aureus agr locus is highly responsive to other staphylococcal species suggesting that agr is an inter-species communication system. Based on these results we speculate that interactions between S. aureus and other colonizing staphylococci will significantly influence the ability of S. aureus to cause infection, and we propose that other staphylococci are potential sources of compounds that can be applied as anti-virulence therapy for combating S. aureus infections
    corecore