

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 31, 2019

Rikke: Users Manual

Olsen, Jens V.; Forskningscenter Risø, Roskilde; Forskningscenter Risø, Roskilde; Forskningscenter
Risø, Roskilde; Forskningscenter Risø, Roskilde

Publication date:
1985

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Olsen, J. V., Haastrup, P., Taylor, J. R., Damborg, A., & Vestergaard, N. K. (1985). Rikke: Users Manual.
Roskilde: Risø National Laboratory. Risø-M, No. 2480

http://orbit.dtu.dk/en/publications/rikke-users-manual(a16d5774-5c17-4587-ab5e-fd3f9f80b12f).html

RISØ-M-2480

RIKKE

USERS MANUAL

P. Haastrup, J.V. Olsen, J.R. Taylor, Axel Damborg

and N.K. Vestergaard

Abstract. RIKKE is a computer program for reliability and safe­

ty analysis of process plants, electrical systems etc. The pro­

gram is available in a PDP-11 and a VAX version. The manual

gives a description of the use of the program as a tool in the

hazard analysis of an actual process plant. Furthermore the

manual gives a summary of the principles of building new compo­

nents as parts of the existing libraries.

February 1985

Risø National Laboratory, DK 4000 Roskilde, Denmark.

ISBN 87-550-1079-2

ISSN 0418-6435

Risø Repro 1985

CONTENTS

Page

1. INTRODUCTION 5

1.1. The RIKKE commands and programs 8

2. HOW TO GENERATE A FAULT TREE OR CAUSE-CONSEQUENCE

DIAGRAM 14

2.1. How to make a model 15

2.2. How to make a plant failure model 28

2.3. How to generate a fault tree 30

2.4. Interactive use of RIKKE - 33

2.5. How to cut a fault tree 38

2.6. Use of execute files in RIKKE 42

2.7. How to generate a cause-consequence diagram 44

3. HOW TO USE FAUNET AS A PART OF RIKKE 48

3.1. How to convert a fault tree to cutsets 50

3.2. Analysis of cutsets by FAUNET 55

4. HOW TO CREATE OR UPDATE A LIBRARY 56

4.1. How to create a graphic component 57

4.1.1. How to edit a graphic component 60

4.1.2. How to include a graphic component 63

4.2. How to create a generic component 64

4.2.1. How to edit a generic component 68

4.2.2. How to include a generic component 70

4.3. How to check a library 71

5. COMMANDS IN THE RIKKE SYSTEM 73

6. HOW TO GET HELP 82

7. THE LIBRARIES 85

7.1. FTLIB3 86

7.1.1. Example of a component in FTLIB3 94

7.2. HAZLB2 99

7.2.1. Example of a component in HAZLB2 104

Page

8. FILOSOPHY OF GENERIC MODELLING 107

8.1. Model simplification 109

8.2. Size versus completeness of fault trees 112

9.REFERENCES 114

LIST OF TABLES 117

LIST OF FIGURES 118

APPENDICES 119

Appendix A: Files in RIKKE 119

Appendix B: Fault tree file codes in RIKKE 120

Appendix C: Files in FAUNET 121

Appendix D: Event data and repair data used in FAUNET. 128

Appendix E: RIKKE commands at a glance 129

Appendix F: FAUNET commands at a glance 130

INDEX 132

Page 5

1 . INTRODUCTION.

RIKKE is a program package intended for support for
reliability and safety analysis of process plants, electrical
systems, electronic, hydraulic systems etc. The theory
underlying plant modelling and failure analysis used in the
system is described in Automatic Fault Tree and Consequence
Analysis (Taylor and Olsen, 1979).

The system is conceived as a set of small programs running on
a small computer (original a PDP-11, but RIKKE is now
available in a VAX version) under a command program and making
use of a data base describing process plants, electrical
circuits etc. The programs permits a relatively inexperienced
user to generate fault trees for almost any technical system,
provided the necessary component models are available. The
command program accepts keyboard commands, and on the basis of
these starts other programs. The command input takes the form
of a "prompt-response" system. That is, the command program
sends a message to the user indicating what command is
required next, and the user can then reply. Generally, if in
doubt, the user of the program can receive help by pressing
the carriage return key on the keyboard. In this case the
command program will provide a helping message, most often
indicating which range of commands are possible. (See also
chapter 6).

The individual programs running under the RIKKE program
monitor has a prompt-response input form which is similar to
that for the monitor, which means that to the user the system
appears as one large interactive program package.

The individual failure analysis programs perform steps such as
accepting and storing plant flow sheet, building up a plant
function and failure model, generating a fault tree, or
printing a fault tree. The programs work by taking some
input, in the form af files stored in a disc storage and as
commands from the keyboard, and produce outputs in the form of
files on disc storage or on a typewriter, line printer,
graphic plotter or graphic display.

The programs make use of a data base which describes plant
component types, plant flow sheets, plant operating procedure
instructions etc. The data base is conceived quite generally,
so that it can support a wide range of different plant model
types (finite state, equation model, energy and mass flow
models, etc.), far beyond the capability of the existing
analysis programs. It is hoped that the RIKKE system will
provide the basis for a continued development of plant safety
and reliability analysis software.

The purpose of this manual is to describe the use of the RIKKE
programs, and to describe that part of the structure and
working of the programs that is necessary for understanding
their use.

It is also the purpose of the manual to provide information
about the libraries developed at RISO National Laboratory and
the principles for executing models.

Page 6

It has therefore been the intention to devide this manual into
parts, with information on the lowest level given early and
with background material in later chapters, in appendices or
in references.

The manual has been written with the intention of fulfilling
the information needs of the END USER, the PRODUCT TECHNICIAN
and the DOMAIN EXPERT. These terms has been defined by Olsen
(1984) and the definition can be seen in table 1.1.

Table 1.1 Levels of information.

End User - The Risk Analyst using RIKKE as a tool for his
Hazard Analysis on a model of an actual process plant
previously fed into the system by a product technician.

Product Technician - A physicist or Engineer with knowledge
about the "--ocess plant (could be chemical or other type)
which is be analyzed by the risk analyst. He uses
RIKKE to perform the modelling of the actual plant based
on engineering drawings and his personal knowledge
together with a library of fault-models for the different
types of components (pumps, pipes, valves, tanks etc.)
from which the plant is built.

Domain Expert - is a physicist or engineer with deep knowledge
about the individual components according, not only to
their behaviour under normal conditions as well as
failure modes, but also how they interact when
interconnected in more complex structures.
He stores his knowledge in a generic component library
from which the Product Technician builds the final model.

It is not the intention of this manual to give information on
higher levels of detail than these three, though artificial
intelligence experts and system programmers has of cause been
involved in development of RIKKE.

Although RIKKE thus contains all elements of an Expert System,
and carries out some important expert tasks - it can never
replace the expert within its area. Instead it may be seen as
an important aid for the Risk Analyst as it carries out some
more trivial tasks.

RIKKE may be seen as an intelligent scratch pad.

For the END USER the important information about how to
generate and cut a fault tree is found in sections 2.3 and
2.4, and the conversion of results to cutsets is found in
section 3«1 •

For the PRODUCT TECHNICIAN information about how to make a
model of the technical system is found in the sections 2.1 and
2.2.

In practice these two roles are commonly intercorrelated.

Page 7

For the DOMAIN EXPERT who makes and maintains the libraries,
information about the tools provided in the system is found in
chapter 4. Further information about the libraries delivered
with the system both for DOMAIN EXPERTS and PRODUCT
TECHNICIANS is found in chapter 7.

For the DOMAIN EXPERT a discussion of the filosophy of generic
modelling and the necessary simplifications is found in
chapter 8.

In chapter 5 the commands available is found and a similar
list can be found in appendix E: RIKKE COMMANDS AT A GLANCE.

In chapter 6 general information about how to obtain HELP is
given.

In the following a short describtion of the RIKKE commands and
programs is given.

Page 8

1.1 The RIKKE commands and programs.

The usual progression of a safety analysis with RIKKE is the
following.

(1) A description of a process plant is input to the computer
as a flow sheet, circuit drawing, block diagram etc.

(2) The information from the drawing is combined with
component information drawn from a library of component
models.

(3) Programs are run to carry out different kinds of safety
analysis.

(4) Programs are run to simplify the results of the analysis,
for example to prune fault trees, generate cutsets etc.

(5) The results are drawn graphically.

Each of these tasks is done with the help of different
subprograms in the RIKKE system.

The structure of RIKKE is shown in figure 1.1.

Page 9

Q-g

Pigure 1.1 Block diagram of RIKKE.

A number of support programs are necessary in order for the
system to run. The GENLIB (generic component librarian and
editor) program allows new or updated component descriptions
to be input to the program library, component descriptions to
be extracted from the library, and printouts to be obtained
from the component library. There will generally be several
component model libraries in a RIKKE system. This is further
described in chapter 4.

For input of operating procedures to the system (plant
operator procedures or sequential control procedures) the
HOPSA program may be included in the system. This allows
procedures to be written in a programming language like form,
and then to be translated to a 'component' form so that the

rage i vj

procedures can be included into plant models in the same way
as more conventional plant components.

When starting a 'session' (period of use) of RIKKE the first
step is to identify which plant model will be used and which
component library. This identification can be made by means
of the MODEL command. Alternatively if the MODEL command is
not used, any of the programs which need this information will
ask (prompt) for it if the information has not been given.
The MODEL command is needed when the user wishes to change
from one plant model to another during the session. If the
user has forgotten which model he is using, he can find out by
typing WHAT.

The MODEL and WHAT commands are executed directly by the RIKKE
monitor. Most of the other commands cause execution of
PORTRAN subprograms. The drawing of the model is further
described in chapter 2.

While executing any of the RIKKE subprograms, only the
commands appropriate to the subprogram can be issued.
Generally a return from a subprogram to the RIKKE monitor is
made when the subprogram is completed, when an error occurs,
or when the STOP command is given in the subprogram.

The first of the RIKKE subprograms to be described is GRACE,
which is activated by the command DRAFT. Its purpose is to
allow plant piping diagrams to be entered. This program asks
first which model is to be input or modified, whether the
model is a new or an old one, and which component model
library is to be used. (If the program can discover any of
this information for itself, it will not bother to ask for
it). Thereafter, the user can construct the diagram by naming
and placing components, and linking them together. A detailed
description of GRACE is found in the GRACE User Manual
(Larsen, 1982).

Once a piping diagram has been prepared, it can be turned into
a model of the plant or system using the MAKE command. When
this command has been given, no further commands need to be
given; and no further information is provided, during
execution of the program. A plant model with the current
plant name will be built up. (If the MAKE command is issued
just after starting, RIKKE will ask for the plant model name).
Once MAKE has been completed, a plant failure model exists and
fault trees and consequence diagrams can be constructed.
(This is described in section 2.2).

The next step in producing a fault tree is to run the actual
fault tree construction program using the command FAULT. The
program replies by asking which component the TOP event is to
occur in, and to identify the TOP event. The fault tree is
then constructed in an internal form.

The fault trees produced by the FAULT command have text coded
in numeric form. The FTTEXT command transforms the numeric
form to text describing fault events. FTTEXT should be used
after execution of FAULT, or, if time and disc space are
short, after using the CUT command. The CUT command is
described in section 2.4.

Once a fault tree has been produced and texted it may be

Page 11

plotted in any of three ways.

The first form of plotting is on a plotter. This requires
that a plotting file is first produced, by executing the
command PTPLOT. The plotting is then produced on the plotter
itself by executing the command PLOT. The result is produced
as a series of pages in A4 format, with cross page connections
inserted automatically by the PTPLOT program.

The command PTSUPER_PLOT works like PTPLOT, but does not break
the fault tree into A4 pages. In stead a larger drawing may
be glued together from several pieces following the scissor
marks provided.

The PLOT program will also plot plant diagrams, and on issuing
the command the program will ask whether a block diagram
(answer B) or a fault tree (answer P) is required. However
this query will only be made when both fault tree an block
diagram plotting files are present.

The second plotting facility is VIEW, which produces a display
on the display screen. The format of the display is the same
as that produced by PLOT, and requires that the PTPLOT command
has been issued prior to execution of VIEW.

The third set of plotting facilities are for use with the
lineprinter. The PTSHOW command allows a plot to be produced
in abbreviated form on the lineprinter. Examples of this kind
of output are shown in figure 1.2. PTSHOW does not require
prior execution of PTPLOT.

Page 12

SYSTEM: DEMO PART: 1

i

2
+
11

/-A-\
i t

3 4
A E
11

/-A-\
i i

5 6
N
f i

7 20
R

i

8
+
? 11

/ — / ! \ — \
! ! !
9 10 11

U E
;

12

i

13

14
+

i f

/-A-\
i t

15 16
U &

i t

/-A-\
! ;

17 18
E >

i

19
U

Figure 1.2 A fault tree plotted by PTSHOW.

Page 13

The TEXT command produces a disc file of text for individual
events on the fault tree. This text is needed to interpret
the output from PTSHOW. The file has the name
<model-name>.PTX, for example PLNTMD.PTX. (A list of the
extensions used can be seen in appendix A).

As an alternative PTSHOW, when operated from a display screen,
may produce its result on a disc file.

Before plotting fault trees, it may be Qesirable to prune them
of unwanted event types. The CUT command allows this pruning
to be performed.

After this general introduction, each of the steps in the
process of generating fault trees will be described in detail.
In the following examples on both the users commands and the
programs response are often given. We have adopted the
notation of a exclamation mark (!) in the left margin to
indicate when a communication to and from the computer is
shown. This exclamation mark is of cause not seen on the
screen.

Page 14

2. HOW TO GENERATE A FAULT TREE.

Starting from the monitor in the PDP-11 or VAX system,
call the program (installed at the system) by typing:

you

RIKKE
Welcome to RIKKE
What next:

You are now in the RIKKE monitor, and have a number of
commands at your disposal. Here only some of the relevant
commands are mentioned. The rest can be found in chapter 5-
A list can be obtained by typing carriage return (<CR>) or
HELP. In table 2.1 the most important commands are listed. A
full list can be found in chapter 6 and in appendix E.

Table 2.1 Some commands in RIKKE.

Possible commands: Used for:

CHECK
CONVERT

CUT

CUTSET
DRAFT
FAULT
FTPLOT

FTSUPER_PLOT

FTTEXT
HELP
LIBRARY
MAKE
MODEL
PLOT

STOP
UPDATE
VIEW

WHAT

Checking if the library is OK
Convert a fault tree to FAUNET

form
Prune fault tree of unwanted

event types
Convert the fault tree to cutset
Activate model drafting
Produce a fault tree
Produce a plotting file / fault

tree (A4 sheets)
Produce a plotting file / fault

tree on one sheet
Add readable text to fault tree

Build up a plant model
Define or change model name
Send plotting file to actual

plotter
Stop execution of RIKKE session

Send plotting file to graphic
display Bcreen

Ask for current model

The first step *n an analysis of a new system is to make a
model. This is described in the following section.

Page 15

2.1 How to make a model.

In order to make a model of your plant you then type:

DRAFT

You then call the subprogram GRACE, which handles the
graphics. The program responds:

GRACE
Interactive drafting system
Model name:

You then define the name of the model. This name will
identify your model in all parts of the RIKKE system.

Once the plant model name has been identified by using the
MODEL command or by answering a prompt query, this model name
is fixed, and will be used by most of the programs.

If no model name has been given, programs will ask the name of
the plant model to be used.

If the user wishes to change the plant model name, he should
use the MODEL command.

As an example we have chosen a system (see figure 2.1) which
consist of two separators, one at high pressure, the other at
low pressure. The system is a let down system, as in an
ammonia plant.

Gas containing liquid enters separator 1 , and gas without
liquid leaves at the top. The liquid with disolved gas passes
on to separator 2 in which the dissolved gas is released at a
lower pressure. The pressure in separator 1 is usually around
300 bar and in separator 2 around 25 bar.

Page 16

GAS

Liquid and
Gas
(high
pressure)

Gas (low pressure)

PSV2

- Serf 1\

LT: Level transmitter
LC: Level controller
LS: Level switch (safety

system)
PC: Pressure controler
PSV: Pressure safety valve

ê - Liquid
(low pressure)

Figure 2.1 Piping and instrumentation
diagram of a let down system.

Page 17

We c a l l the system LDDRUM:

Model name:
Old, New or continue:

LDDRUM
NEW

The program needs to know from which library the components
are to be chosen. With the RIKKE package two libraries are
delivered: HAZL82, with about 25 components, and FTLIB3 (the
original safety library) with about 60 components. Here we
have chosen to use FTLIB3. A full list of the components in
the libraries can be found in chapter 7.

Library:
Loading library
(blank screen)
What now:

PTLIB3

We are now in the graphic editoring system, and can draw,
include components from the library and link them together.
If the carriage return is pressed, the possible commands are
shown.Some of the most important are shown in table 2.2.

Table 2.2 Some commands in GRACE.

Command Used for

All
Alter

Component
Draw
Duplicate
Erase
Pind
Grid
In

Link
Library
Move
Out

Quit
Redraw
Relink

Save
Setup
Shift
Stop
Text
Unlink
Window

Draft all components in the library.
Modify the parameters of an

existing component in the draft.
Include a new component in the draft.
Drawing lines, arcs and circles.
Duplicate a drawing.
Erase a drawing or component.
Find a specified component in the

draft and redraw it in a bigger window.
Draw a grid on the screen.
Define a new window

with 1/4 of the current area.
Link two ports.
Change the library.
Hove a component.
Define a new window

with 4 times the current area.
Quit the whole draft.
Redraw the current draft.
Delete and reenter

connection between two components.
Save the current draft data base.
Define the drawing facilities.
Move the whole draft.
Terminate drafting.
Put a text on the draft.
Delete a specified link between two ports.
Define a part of the draft

to be shown on the whole screen.

Page 18

A further description of the graphic editors is found in GRACE
User Manual (Larsen, 1982). In order to set the drawing
facilities as desired, the command SETUP is used (default
values in parenthesis):

Advanced drafting? (No)
Names in output:
Components? (No)
Occupied ports?(No)
Free ports?(No)
Text in output:
Component text?(Yes)
Free text(Yes)
Text new components?(No)
Grid(x,y):(lOO,lOO)
Step(20)
Individual scaling?(No)
Smooth links(Yes)
Dotted links(No)
What now:

SETUP

<CR>

YES
YES
YES

NO
<CR>
<CR>
<CR>
<CR>
YE3
<CR>
<CR>

The setup is now as desired for the first component to be
included. Any other setup can of cause be used. If one wish
to terminate the setup list on the way, this is done by typing
an X.

The setup chosen will be active until the drafting is
firished. The next time the Draft command is used, a new
setup is required.

We then wish to add a component to the draft:

What now:
Type:
Form:
Component name:

COMPONENT
SEPARA
1
SEP1

The program responds with an activation of the position
system. Point out the position and type the number from 0 to
7 or a space according to which rotation is desired. The
orientation is as shown in figure 2.2.

~\

Page 19

POS
OUT

OUT t& POS

OUT

OUT

POS

POS QfT .IN

Figure 2.2 Orientation of a compon ufc.

Scale
<SP>
2

The component is now seen on the screen. A good advise: Use
an individual upscaling of 2 or 3 on the main components and
the standard scaling (1) on for instance valves, sensors and
controllers. The option "scaling" is chosen in the setup
mode. The order is confirmed by

What now:
Type:
Form:
Component name:

COMPONENT
REGVLV
1
RV

Point out position and type!

Scale:
3
1

Page 20

The component is shown, confirm by

E

Ve now wish to link the two components. We choose to link
using the cursor to point position (on a YT 105 or 240 screen)
or the sighting (on a 4014 screen). First we use the command
LINK, then we point out components and confirm:

What now: LINK

Here you may get the responce "Too far away" which means that
the cursor or sighting is pointing to a point too far away
from a component or port to identify the component or port.

Then we point out the port and confirm by:

We have now defined the beginning of the link and we then
point out the second component, confirm and point out the port
on the second component and confirm by:

A number of different link types are available (see table
2.3)> A list on the screen can be obtained by typing a
question mark here.

Table 2.3 Link types

Page 21

F
U
D
L
R
C
A

B
E
M

(For full line)
(For up)
(For down)
(For left)
(For right)
(For connect)
(For arc, using a <SP>
to define the middle point in a curve)

(For begin)
(For end)
(For moveable)

We responded:

What now:
You have no hardcopy file
Want one before exit?(Yes)
Want a peekhole?(No)

Writing hardcopy file

F
STOP

YES
HO

The hardcopy file is the file, where the graphic information
is stored. A further description i3 found in Larsen (1984).
The peekhole command is used if you want to draw only part of
the system, defined with a window.

Current draft not saved

SAVE before exit?(Yes)
Keep draft database(Ho)
Picture name was: LDDRUM

What next:

YES
YES

We are now hack in the RIKKE monitor.

PLOT
Model name: LDDRUM
Plotting Block-diagram

PLOT on:Plotte
General plotter drive
Options:

DIP AUTO

Page 22

We have now plotted figure 2.3«

SEP2
_LEV

Figure 2.3 First part of a let down system.

We then want to continue our drafting:

What next:

GRACE
Interactive drafting system
Model name:
Old, new or continue:
Loading draft.

DRAFT

LDDRUH
CONTINUE

The draft is then shown on the screen. The option CONTINUE is
allowed, because the draft database has been saved. This
database uses the extension *.DIA. (A full list of extensions
is found in appendix A).

\

Page 23

What now:
Type:
Form:
Component name:

COMPONENT
PORGAC
1
VPRV1

The position is then pointed out and the rotation is given and
confirmed:

3
E

The name VPRY1 is chosen as a synonym of Valve Positioner for
Regulation Valve 1. The maximum number of characters is 6.

To link the two components it is possible to use the pointing
system as described above or to link by names as follows:

What now:

From component:
Port:
To component:
Port:

LINK
N
RV1
POS
VPRV1
POS
F

The same principle is used to instal a regulation unit
connected to the valve positioner. The regulation unit is
reading signals from a levelsensor (trough an inverter who
invert the out-signal logic from the levelsensor). The screen
will now show the draft as seen in figure 2.4:

Page 24

Pigure 2.4 Part of a let down system.

We want to connect the levelsensor and the levelport on
separator 2. This connection is not a part of the fluid
system and we woald therefore like to use a dotted line.

The dotted line has no function in relation to the fault tree.

Page 25

The facility is provided in order to make a higher degree of
agreement between a piping and instrument diagram and the
model possible.

To draw dotted lines it is nessesary to make a new setup.
This is done by writing SETUP and answer YES to the question
"Dotted lines(No)?".

The commands to create a good lay out of the dotted line could
be as follows:

What now: LINK

The horizontal and vertical line of sight would now be shown.
Sight in center of separator 1 and press Y (and confirm by Y
once more), find the level port, the level sensor and the
level port on the level sensor and do the same. The text on
screen would now be:

Sep1
Lev
Levi
Lev

The horizontal line of sight should now be placed trough level
gate on separator 1 and the vertical line should be placed at
the point where we want the line to change direction (down).
A line can be drawn by giving the direction (L:left; R:right;
U:up; D:down) from the starting point to the cursor. The
correspondance to the RIKKE system is then:

L
E
D
C

The response from the system is the drawing of the wanted
dotted line. It is possible to draw full lines in a setup
with "dotted lines" by using the order P for full line instead
of L,R,U,D and C for connect (see also table 2.3) •

We then continue our drafting by adding supplies and drains to
the not connected input and output lines on the separators and
valves. The idea is simply to define the border of our system
and to make sure that disturbances from outside your system
(build into the supplies and drains) is taken into account.

Page 26

The following components has in total been added:

SEP1 SEPARATOR
SEP2
RV REGULATION VALVE
RV2
RV3
VPRV1 FORGAC
VPRV2
VPRV3
REG1 REGULATOR
REG2
REG3
LEVI LEVEL SENSOR
LEV2
INV1 INVERTER
INV2
INV3
TRA2 TRANSA
SV2 SAFETY VALVE
1 DRAIN
2
3
4
2 SUPPLY

The full drawing is seen in figure 2.5.

Page 27

Figure 2.5 The final let down system.

Page 28

2.2 How to make a plant failure model.

After finishing the model, we are interested in making a plant
failure model. In the RIKKE monitor we use the command MAKE.
The input data for the plant failure model generator is the
block diagram file, with the extension *.BLK, just created by
the DRAFT command.

The command will work independent on whether the model has
been plotted or seen on the screen.

Nevertheless it is a good idea always to have a plot of your
mudel in front of you, when you make the fault tree. The
plant failure model consists of a list of components, their
failure models and their connections. The plant failure model
uses the extension *.PPM.

Page 29

What next: HAKE

-RIKKE-
Plant description Linker

Model name:LDDRUM

LIBRARY: PTLIB3
COMPONENT: SEP2 - NEW TYPE: SEPARA
COMPONENT: RV - NEW TYPE: REGVLV
COMPONENT: VPRV1 - NEW TYPE: PORGAC
CONNECT: RV - PORT: POS TO: VPRV1 - PORT: POS
COMPONENT: REG1 - NEW TYPE: REG
CONNECT: VPRV1 - PORT: IN TO: REGl - PORT: OUT
COMPONENT: INV1 - NEW TYPE: INVERT
CONNECT: REG1 - PORT: IN TO: INV1 - PORT: OUT
COMPONENT: LEVI - NEW TYPE: LEVSNS
CONNECT: INV1 - PORT: IN TO: LEVI - PORT: OUT
COMPONENT: SEP1 - TYPE: SEPARA
CONNECT: SEP1 - PORT: DRN TO: RV - PORT: IN
CONNECT: SEP1 - PORT: LEV TO: LEVI - PORT: LEV
CONNECT: SEP2 - PORT: IN TO: RV - PORT: LEV
COMPONENT: RV2 - TYPE: REGVLV
COMPONENT: VPRV2 - TYPE: PORGAC
COMPONENT: INV2 - TYPE: INVERT
COMPONENT: REG2 - TYPE: REG
CONNECT: RV2 - PORT: IN TO: SEP2 - PORT: OUT
CONNECT: CRV2 - PORT: POS TO: VPRV2 - PORT: POS
CONNECT: VPRV2 - PORT: IN TO: INV2 - PORT: OUT
CONNECT: INV2 - PORT: IN TO: REG2 - PORT: OUT
COMPONENT: TRA2 - NEW TYPE: TRANSA
CONNECT: TRA2 - PORT: OUT TO: REG2 - PORT: IN
COMPONENT: SV2 - NEW TYPE: SV
COMPONENT: LEV2 - TYPE: LEVSNS
COMPONENT: INV3 - TYPE: INVERT
COMPONENT: REG3 - TYPE: REG
CONNECT: SEP2 - PORT: LEV TO: LEV2 - PORT: LEV
CONNECT: LEV2 - PORT: OUT TO: INV3 - PORT: IN
COMPONENT: VPRV3 - TYPE: PORGAC
CONNECT: TRA2 - PORT: IN TO: SEP2 - PORT: PRESS
COMPONENT: RV3 - TYPE: REGVLV
CONNECT: INV3 - PORT: OUT TO: REG3 - PORT: IN
CONNECT: REG3 - PORT: OUT TO: VPRV3 - PORT: IN
CONNECT: VPRV3 - PORT: POS TO: RV3 - PORT: POS
CONNECT: RV3 - PORT: IN TO: SEP2 - PORT: DRN
CONNECT: SEP2 - PORT: SV TO: SV2 - PORT: IN
COMPONENT: 1 - NEW TYPE: DRAIN
COMPONENT: 2 - TYPE: DRAIN
COMPONENT: 3 - TYPE: DRAIN
COMPONENT: 4 - TYPE: DRAIN
CONNECT: 4 - PORT: IN TO: RV3 - PORT: OUT
CONNECT: SV2 - PORT: OUT TO: 3 - PORT: IN
CONNECT: RV2 - PORT: OUT TO: 2 - PORT: IN
CONNECT: SEP1 - PORT: OUT TO: 1 - PORT: IN
COMPONENT: 2 - NEW TYPE: SUP
CONNECT: 5 - PORT: OUT TO: SEP1 - PORT: IN

When this plant failure model has been made, you are ready to
generate the fault tree.

Page 30

2.5 How to generate a fault tree.

All the components and the connections between the« are now
prepared for making a fault tree. To sake a fault tree we use
the command: PAULT. A nuaber of options are possible. These
are shown in table 2.4.

Table 2.4 Options in command FAULT.

Option

B
I
D
T
L
E
S
C

Meaning

Break
Internal
Depth
Time
Loop-stop
Event list
Show
Continue

To solve our first small problem we have chosen the option
D(epth).

The syntax for specifying the TOP event is

<variable name> BECOMES <value>

for example

OUT BECOMES OH

! What next:
D

! -RIKKE-
! Fault-tree Generator
! Model name: LDDRUM
! Top-Event occurs in Component:
! Top-Event:
! Break evaluation at fault-tree level:
! START AT 11:32:11
! FINISH AT 11:32:19
! THE CALCULATION TOOK
! 6 SECONDS
! PROBLEM SIZE - MODE 1:
! 3 - MODE 2: 2

The fault tree is now generated. The resulting files have the
extensions *.FTR (structure), *.FTX (text) and *.FTN (numeric
text code).

In order to do the calculations faster, the computer works
with the text stored in one database and numbers specifying
the text elsewhere. It is therefore necessary to add readable

FAULT OPTION

SEP2
DRUM -> BURST
2

Page 31

text to your fau l t tree using the couand PTTEXT:

What next: FTTEXT

-RIKKE-
P-T or C-D Texter
Model name:LDDRUM

We now want to plot the fault tree. Two different commands
are available, namely FTSUPBRPLOT and PTPLOT. The
PTSUPER_PLOT produce one large drawing of the fault tree,
whereas PTPLOT devides the fault tree into A4 pages. We have
chosen the command PTSUPBR PLOT. The resulting"fault tree is
stored in the file with extension *.HCP.

What next: PTSUPER_PLOT

-RIKKE-
Cause-Consequence-Diagram Plotter
Model name:LDDRUM

-RIKKE-
CCD and Fault-tree plot

Plot name
BLOAD
BSUCC
TVTIQQ liVJjAOO

BALANC
BSHOW
BMOVE

11
DRAW
ADDTXT
FINISH

What next:

:LDDRUM

9

PLOT

RIKKE
General Plotter Driver
Model name:LDDRUM
Plotting Fault-tree

or Block-diagram ? FAULT-TREE
PLOT ON: PLOTTE
General plotter drive
Options: DIP AUTO
Please change paper on plotter - DONE

What next: STOP

goodbye

Page 32

Many of the programs provide prompts, describing the input
which is required next. e.g. in the VIEW program, "Fault
tree, or Block diagram". For these prompts the capital
letters in the prompt, introducing the words describing
alternatives, are acceptable responses. In the example, a
response "E" will allow a block diagram to be plotted.

The resulting fault tree is seen in figure 2.6.

Figure 2.6 A fault tree for the event DRUM -> BURST
in separator 2.
Model LDDRUM. Library FTLIB3- DEPTH = 2.

Page 33

2.4 Interactive use of RIKKB

In the RIKKE system you may choose the other options when you
generate your fault tree. The following options are possible.
The most important are the BREAK option, which together with
the component specification ALL, convert the program from an
automatic fault tree generating program to a very powerful
interactive tool. By using this command you yourself can
decide how far a given branch of the fault tree is to be
analysed. This means that it is possible to combine the logic
in the computer, with your engineering judgement during the
generation of the fault tree. This will reduce the size of
the fault tree, and you can therefore analyse larger systems,
or use more complicated models as you wish.

In the VAX version 2.8 of the RIKKE system (Not released ye*)
a further sophisticated option can be used. The Option
permits the user to follow the development of the fault tree
on one screen, while another shows the piping and
instrumentation diagram, and indicates where the generation is
at the moment. This option (SEND) can already be used with
two PDP-11 computers.

In the following an example of the interactive use
The possible commands is shown in table 2.5«

is shown.

Table 2.5 Commands in option Break All

B Break or
H Halt - stop analysis here - take next alternative
T This event is always TRUE
F This event is always FALSE
S Stop analysis here and on all following break-points
C and any other response - continue analysis

What next:

- R I K K E -
Fault-tree Generator [V4G]
Model name:
Top-Event occurs in Component:
Top-Event:

Break-Point in Component:

START AT 08:50:53
SEP2: DRUM -> BURST
SEP2: P -> OVERPRESS
SEP2: P -> H1
SEP2: P -> DH1
SEP2: OUT -> BLOCKED
RV2: IN -> BLOCKED

RV2: POS -> FAILCLOSED
VPRV2:P0S -> PAILCLOSED

VPRV2:IN -> PAILHI

RIKKE2
FAULT OPTION B

LDDRUM
SEP2
DRUM -> BURST

ALL

0
0

10
20
30
30 :

30
30 :

C

C

-30

T!JV2:

IHV2:
REG2:

REG2:
RBG2:
REG2:
RE62:
TRA2:

TRA2:
TRA2:
RV2:
2:

2:
RV2:
SEP2:
RY:

SEP2:
RV:

SEP2:
SV2:

SV2:
SV2:
SEP2:

SEP2:
SV2:

SEP2:
SEP2"
SEP2:
SEP2
RV:

SEP2
RV:

SEP2
RV:

SEP2
SEP2
SEP2
SEP2
SEP2
RV:

SEP2
RV2:

SEP2
RV2:

SEP2
RV2:

OUT -> PAILHI

IH -> PAILLO
OUT -> PAILLO

SBT -> ERROR
WSTATB -> PAILLO
PVR -> PAILOPP
IH -> PAILLO
OUT -> PAILLO

WS -> LO IHPUT
WS -> PAILLO
OUT -> BLOCKED
IH -> BLOCKED

WS -> BLOCKED
WS -> BLOCKBD
IH -> HISUPPC
OUT -> HISUPPC

IH -* SHUTOPP
OUT -* SHUTOPP

SV -* RELIEVED
IH -* RELIEVED

IPOS -» OPEH
IH -* HISUPP
SV -* HISUPP

SV -* RELIEVED
IH -* RELIEVED

TEMP -> HI
: TX -> DHT1
: TX -> DHT2

IK -> DISTHIT
OUT -> DISTHIT

IH -* SHUTOPP
OUT -* SHUTOPP

: IH -* SHUTOPP
OUT -* SHUTOPP

: TX -> DHT1
: IOUT -> REVPLO
: P -> L3
: P -> DL3
: IH -> LOSUPPC

OUT -> LOSUPPC

: OUT -• SHUTOPP
IH -* SHUTOPP

: OUT -* SHUTOPP
IN -* SHUTOPP

: OUT -* SHUTOPP
IN -* SHUTOPP

-30

-30
-30

-30
-30
-30
-30
-30

-30
-30
-30
-30

-30
-30
-30
-30

-20
-20

-20
-20

-20
-20
-20

-10
-10

0
-1000
-1100
-1110
-1110

-1100
-1100

-1000
-1000

-100
-110
-110
-120
-130
-130

-130
-130

-120
-120

-110
-110

Pa«« 35

SBP2:
SBP2:
SEP2:
SBP2:
RV2:

SSP2:
RV:

SBP2:
RV:

SEP2:
RV:

RV:
VPRV1 :

VPRV1 :
RBG1:

RV:
RV:
SBP2:
RV:

SBP2:
RV2:

SBP2:
RV2:

SBP2:
RV2:

SEP2:
SEP2:
RV2:
SEP2:
RV:
SEP2:
RV:
SBP2:
SV2:
SBP2:
SBP2:
SEP2:
RV3:
SEP2:
RV:
SEP2:
RV3:
SEP2:
RV3:
SEP2:
RV:
SEP2:
RV:
SEP2:
RV:
SEP2:
RV3:

OUT -> SUP
P -> DL2
P -> DL1
OUT -> ATH
III -> ATH

II -> BOSUPP
OUT -> HOSUPP

IB -> ATM
OUT -> ATH

IH -> BLOCKED
OUT -> BLOCKED

POS -> PAILCLOSBD
POS -> PAILCLOSBD

IB -> PAILHI
OUT -> PAILHI

IH -> BLOCKED
VS -> BLOCKED
IH -> DISTLOSUPPC
OUT -> DISTLOSUPPC

OUT -• COHPHIBACKPC
IH -* COHPHIBACKPC

OUT -* SHUTOPP
IH -• SHUTOPF

OUT -• SHUTOPP
IH -• SHUTOPP

OUT -> SUP
OUT -> HOT
IH -> HOT
IH -> HIT
OUT -> HIT
IH -* SHUTOPP
OUT -* SHUTOF?
SV -• RELIEVED
IH -• RELIEVED
DRUM -> PULL
DRB -> REVPLO
DRH -> BLOCKED
IH -> BLOCKBD
IH -* SHUTOPP
OUT -* SHUTOPP
DRH -> DISTHIBACKP
IH -> DISTHIBACKP
DRH -> HIBACKP
IH -> HIBACKP
IH -* SHUTOPP
OUT -* SHUTOPF
IH -> HISUPP
OUT -> HISUPP
IH -> DISTHISUPP
OUT -> DISTHISUPP
DRH -» COHPLOBACKP
IN -• COMPLOBACKP

-110
-110
-210
-220
-220 :

-220
-220 :

-220
-220 :

-220
-220 :

-220
-220 :

-220
-220 :

-220
-220
-310
-310 :

-310
-310 :

-210
-210 :

-110
-110 :

-110
-110
-110 :
-110
-110 :
-100
-100 :

0
0 :

-10
-110
-20
-20 :
-20
-20 :
-110
-110 :
-20
-20 :
-20
-20 :
-110
-110 :
-1*0
-110 :
-110
-110 :

H

H

H

C

C

H

H

H

H

S

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

STOPPED

SBP2:
SEP2:
SY2:
SEP2:
SBP2:
SEP2:
SEP2:
RY2:
SBP2:
RY2:
SEP2:
RY:
SEP2:
SY2:
SBP2:
SEP2:
SEP2:
RY2:
SEP2:
RY:
SBP2:
RY:
SBP2:
SY2:
SEP2:
SEP2:
SEP2:
RY:
SBP2:
RV:
SBP2:
RY2:
SEP2:
RV:
SEP2:
SV2:

OUT -> TOOSHALL
SY -• RBLIBYBD
Il -• RBLIBYBD
PRBSS -> HI
P -> H2
P -> DH2
OUT -> SHUTOFP
IH -> SHUTOFP
OUT -> HIBACKPC
IH -> HIBACKPC
IH -* SHUTOPP
OUT -* SHUTOFP
SY -* RBLIBYBD
IH -* RBLIBYBD
P -> H4
P -> DH4
OUT -> DISTHIBACKPC
IH -> DISTHIBACKPC
IH -• COHPLOSUPPC
OUT -* COHPLOSUPPC
IH -* SHUTOFF
OUT -* SHUTOFP
SV -• RBLIBYBD
IH -» RBLIBVBD
P -> H3
P -> DH3
IH -> SCUH
OUT -> SCUH
IH -> DISTHISUPPC
OUT -> DISTHISUPPC
OUT -• COHPLOBACKPC
IH -» COHPLOBACKPC
IH -* SHUTOFF
OUT -* SHUTOFP
SV -• RELIEVED
IH -» RELIEVED

-10
-10
-10 :
-100
-10
-20
-30
-30 :
-30
-30 :
-20
-20 :
-20
-20 :
-10
-20
-30
-30 :
-30
-30 :
-20
-20 :
-20
-20 :
-10
-20
-21
-21 •
-30
-30
-30
-30
-20
-20
-20
-20

STOPPBD

STOPPED

STOPPBD

STOPPBD

STOPPBD

STOPPBD

STOPPED

STOPPED

STOPPED

: STOPPBD

: STOPPED

: STOPPED

: STOPPED

: STOPPED

FIHISH AT 08:53:11
THE CALCULATIOH TOOK 2 HIHUTBS 17 SECOHDS
PROBLBH SIZE - MODE 1: 29 - MODE 2: 3

Here the events are listed. "->" is
"becomes" and "-»" means "does not become".

interpretated

\

Pag« 37

This problea is too large to print in this aanual, and th«
coawand CUT is therfor« used. Th« cossand is futher described
in section 2.5.

Page 38

2.5 How to cut a fault tree.

Before plotting fault trees, it aay be desirable to prune thea
of unwanted event types. The CUT coaaand allows th.s pruning
to be perforaed. When the CUT coaaand is given, the prograa
asks which type of cutting is required. The cutting type is
selected by typing a nuaber. This nuaber should be the sua of
the code nuabers for each type of cutting required. The code
nuabers are given in table 2.6. A copy of table 2.6 can be
obtained by pressing the carriage return key at the point
where the type of cutting required is asked by the program.

Table 2.6 CUT code numbers.

1 - Drop remaining states
2 - Drop iapossible events
4 - Drop normal conditions
8 - Drop unexpected events
16 - Suppress intermediate events/states
32 - Drop unserviceable states
64 - Drop common-mode events
128 - Drop negative loops
256 - Drop unlinked working states
512 - Drop opened loops
1024 - Assign "TRUB" and "FALSE"

Table 2.7 shows in details what gate types are modified, and
what values are assigned at each different cutting mode.

Table 2.7 Values assigned to gates in different modes.

CUT code Gate type Assigned value Tree mode

1
2
4

8
16

32
64

128
256
512

1024

MR" with no inputs
II T i l

"B" or "N" with no i:
"AM wi th no inputs
"U"
itpn n _ n i»jff" i»\tt i ipn

with one input
"P" with no inputs
"C"
w-w with "."
"W with no inputs
"0W

11 mw

II p i !

and

nputs

"W"

.TRUE.

.TRUE.
.FALSE.

.TRUE.
.FALSE.

Value of input
.TRUE.

.FALSE.

.FALSE.

.FALSE.
.TRUE.
.TRUE.

.FALSE.

1
2
2
1
1

-
2
1
2
2
2
—
—

The fault tree build in section 2.4 is pruned as an example of
the use of the CUT command. We have chosen to cut all kind of
unwanted event types, and the sum of the cut code numbers (the
mode) is therefore 2047. The pruned tree is called LD2047.

Pag« 39

What next: CUT

- R I K K E -
Fault-tree Cutter [V2P]

Model naae:
Node:

Model-naae for the pruned Tree:

Cutting text-file
Cutting text-file [numeric]
PRUNING PINISHED [571 / 579]

What next:

PILE: LD2047-PTR - SYSTEM:LD2047 PROM LDDRUM

LDDRUM
2047

LD2047

PTSHOW

SYSTEM: LD2047 PART: 1

i

3
+

i

13
&

/

i

i

4
&
f i

/-A--\
i

62
H

/
;

5
&

/-A--\
i i

65 156
+ H

\
;

17
+
11

/-A-\
i »

i t

21 4'
+ H

1 1 i

/ /i\ \

/-
i

i

31
E

30
+

i t f r

/ - / \ - \

32
E

j

40
E

;

33
E

i i

•/!

--/

i i

V A

- \
i

i

44
H

i

24
E

. \

j
t

36
+

t »
/-A--\
t i

37 38
E E

193
&
111

/ / j \ \
! ! !

204 ?07
H H

197
+

i i

1 1

i i

0:

66
&

/-A-\

;

75
H

i

t

70
&
i i

/-A-\

81
H

78
H

67
&
11

t
;

150
H

?\2

i f

208
&
i t i

i

221
H

225

— \
t

224
H

- \

200
H

201
H

215
H

218
H

!

I

153
H

Page 41

SYSTEM: LD2047 PART: 2

225
&

i i i

/ /j\ \
! ! !

229 241 244
+ H H

t t

/-A—\
i t

232 231
H &

i i

/-A-\
; ;

235 238
H H

The text to this fault tree is stored in LD2047.PTX:
LD2047 PROM LDDRUM

1 SEP2 :DRUM BECOMES BURST
31 REG2 :SET BECAME ERROR 30 SECONDS AGO
32 REG2 :WSTATE BECAME PAILLO 30 SECONDS AGO
33 REG2 :PWR BECAME PAILOPP 30 SECONDS AGO
37 TRA2 :WS BECAME LO_INPUT 30 SECONDS AGO
38 TRA2 :¥S BECAME PAILLO 30 SECONDS AGO
40 2 :WS BECAME BLOCKED 30 SECONDS AGO
24 RV2 :WS BECAME BLOCKED 30 SECONDS AGO
41 RV :OUT BECAME HISUPPC 30 SECONDS AGO
44 RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
62 SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
75 RV :OUT BECAME DISTHIT 1110 SECONDS AGO
78 RV :OUT DID NOT BECOME SHUTOPP 1100 SECONDS AGO
81 RV :OUT DID NOT BECOME SHUTOPP 1000 SECONDS AGO
150 RV :OUT BECAME HIT 110 SECONDS AGO
153 RV :OUT DID NOT BECOME SHUTOPP 100 SECONDS AGO
156 SV2 :IN DOES NOT BECOME RELIEVED
200 RV2 :IN BECAME SHUTOPP 30 SECONDS AGO
201 RV2 :IN BECAME HIBACKPC 30 SECONDS AGO
204 RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
207 SV2 :IN DID NOT BECOME RELIEVED 20 SECONDS AGO
215 RV2 :IN BECAME DISTHIBACKPC 30 SECONDS AGO
218 RV :OUT DID NOT BECOME COMPLOSUPPC 30 SECONDS AGO
221 RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
224 SV2 :IN DID NOT BECOME RELIEVED 20 SECONDS AGO
232 RV :OUT BECAME SCUM 21 SECONDS AGO
235 RV :OUT BECAME DISTHISUPPC 30 SECONDS AGO
238 RV2 :IN DID NOT BECOME COMPLOBACKPC 30 SECONDS AGO
241 RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
244 SV2 :IN DID NOT BECOME RELIEVED 20 SECONDS AGO

Page 42

2.6 Use of command files in RIKKE.

When you are familiar with making fault trees and
cause-consequence diagrams, you can operate the RIKKE system
with a set of command files. You can design your own command
files, which contain different combinations of commands to the
RIKKE system. Some times you make wish to make only the fault
tree in an interactive way, and some times you would like to
have both cutsets, tiesets and pruned fault trees. Each
command file can contain the commands needed for the different
analysis.

As an example we have made three command files: one for the
plant failure model building and fault tree generation, one
for the cutting of the fault tree and one for the generation
of cutsets and tiesets.

IDEMEX1 .EXE - EXAMPLE OP A
!COMMAND PILE WITH PLANT FAILURE
!MODEL AND FAULT TREE GENERATION
MODEL
DRAFT OLD HAZLB2
PLOT B OPTION 'DIP AUTO'
MAKE
FAULT OPTION D LEVEL ALL
FTTEXT
FTSUPERPLOT
VIEW FT
PTSHOW
CONVERT FT
FTCHECK

IDEMEX2.EXE - EXAMPLE OP A
!COMMAND PILE WITH CUTTING
CUT
FTSUPERPLOT
VIEW FT
FTSHOW
TYPE
PLOT FT OPTION 'DIP AUTO'

IDEMEX3.EXE - EXAMPLE OP A
!COMMAND FILE WITH CUTSETS AND TIESETS
CUTSET
EVALUATE
PATHSET

As you can see the commands are placed in seperate lines with
the attached subcommands in the same line. If a line begin
with an exclamation mark, the rest of the text in the line is
only viewed as comments which is shown on the screen, but not
executed as commands.

When you want to use the command files you enter the RIKKE
program and make a draft of the plant in an ordinary way.
Then you first make the plant failure model and the fault tree
by typing:

Page 43

What next: EXECUTE DEMEX1

and the commands in the file DEMEX1 will be executed. You can
follow the execution on the screen, since the commands are
typed as they are executed. For some of the commands in
DEMEX1 we have not given all the information needed for
execution of the commands, and we are then asked interactively
for the missing information.

Then next: !DEMEX1.EXE - EXAMPLE OP A
Then next: !COMMAND PILE WITH PLANT FAILURE
Then next: !MODEL AND FAULT TREE GENERATION

Then next: MODEL
Model name: LGTANK
The model LGTANK contains:
Block-diagram

Then next: DRAFT OLD
GRACE

Interactive drafting system
Model name: LGTANK
Old, new or continue: OLD
Loading draft

Then the draft is shown on the screen, and if you are
satisfied with the draft, you can stop the drafting in the
usual way. The commands in the command file DEMEX1 will then
continue to be executed until the command STOP is reached, and
you leave the RIKKE system.

Page 44

2.7 How to generate a cause-constquense diagram.

The cause-consequence diagram show the effects of a given
event. In the fault tree generation you determined a top
event and the RIKKE program found the causes to this event.
In the cause-consequence diagram building you choose an event
and the RIKKE program will find the possible consequences.
For each consequence you can decide whether you think it is
reasonable or not; B stops further analysis of the
consequence; II stops unwanted consequences; S stops further
analysis and C continue the analysis. The program package is
activated by the command CONSEQUENCE and need information
about the component name and the initial event type. As an
example we will make a cause-consequence diagram of the LDDRUM
system. The initial event is IN -> HIT and it occurs in SEP2:

What next:
- R I K K E -

Consequence-Diagram Generator [V3A]
Model name:
Initial-Event occurs in Component:
Initial-Event:

Comp. Event

SEP2:
SEP2:
/
SEP2:
\ —
SEP2:
/

RV3:
\ —
SEP2:
RV3:
SEP2:
/
RV2:
\ —
RV2:
SEP2:
/
/
SEP2:
\
SEP2:
/

RV3:
\ —
SEP2:
RV3:
SEP2:
SEP2:
SEP2:
/
RV2;
\ —
RV2:

TEMP -> DISTHI
TX -> DHT1

IN ISNT SHUT
conditioning

OUT -> DISTHIT

POS IS OPEN
conditioning

T -> DISTHI
OUT -> DISTHIT
DRN -> DISTHIT

POS IS OPEN
conditioning

OUT -> DISTHIT
TEMP -> HI

SV ISNT RELIEVED
conditioning

OUT -> HIT

POS IS OPEN
conditioning

P -> OVERPRESS
OUT -> HIT
DRUM -> BURST
T -> HI
DRN -> HIT

POS IS OPEN
conditioning

OUT -> HIT

10
10

10

10

10

10
10
10

10

10
110

110

110

110

110
110
110
110
110

110

110

Time

CONSEQUENCE

LDDRUM
SEP2
IN -> HIT

C
C

C
C
C

C
C

C
C
C
C
C

Page 45

The generated cause-consequence diagram is turned into a plot
by the plotting commands CDPLOT or CDSUP5R PLOT:

What next: CDSUPBR_PLO':

- R I K K E -
Cause-Consequence-Diagram Plotter [V2C]
Model name: LDDRUN

— R I K K E —
CCD * Fault-tree plot [V?B]
Plot name: LDDRUM
BLOAD
BSUCC
LVLASS
BALANC
BSHOW
BMOVE
Size of plot: 5 * 13

DRAW
ADDTXT
FINISH

The text to the plot of the cause-consequence diagram is
turned into readable form by the command CDTEXT. The text is
stored in a file with extension *.CDX. The text in numeric
form is found in the file with extension *.CDN.

What next: CDTEXT

- R I K K E -
F-T or C-D Texter [V2B]
Model name: LDDRUM

Page 46

The cause-consequence diagram is stored in a file with
extension *.CDR and can be shown on the screen by the command
CDSHOV:

What next:

PILE: LDDRUM.CDR - SYSTEM:LDDRUM

CDSHOW

SYSTEM: LDDRUM PART:

1
E
i

2
*

i 1 1

I-
i

3
E
;

6
E
i

14

16
E
i

17
Y

18

j

19
U

1

4
E
i

7
Y
i

8
*

f t

l—l\—\
i

9
E
j

20
*

i i

/-A-\
i

21
Y
;

23
E
i

27
U

;
22
E
i

29

i

30
E
i

31
Y
;

32

f

33
U

i

10

;

24
E
!
I
!

25
Y
i

26

i

28
U

5

i

11
E
i

12
Y

13

;
15
U

What next: TYPE LDDRUM.CDX

Pile: LDDRUM.CDX
LDDRUM

I SEP2 :IN BECOMES HIT
3 SEP2 :TEMP BECOMES DISTHI 10 SECONDS APTER START
4 SEP2 :TX BECOMES DHT1 10 SECONDS APTER START
7 SEP2 :IN IS NOT SHUTOPP 10 SECONDS APTER START
5 SEP2 :0UT BECOMES DISTHIT 10 SECONDS APTER START
II RV3 :IN BECOMES DISTHIT 10 SECONDS AFTER START
12 RV3 :POS IS OPEN 10 SECONDS APTER START
6 SEP2 :T BECOMES DISTHI 10 SECONDS AFTER START
13 RV3 :OUT BECOMES DISTHIT 10 SECONDS APTER START
15 5 :IN BECOMES DISTHIT 10 SECONDS AFTER START
14 SEP2 :DRN BECOMES DISTHIT 10 SECONDS APTER START
16 RV2 :IN BECOMES DISTHIT 10 SECONDS AFTER START
17 RV2 :POS IS OPEN 10 SECONDS AFTER START
18 RV2 :OUT BECOMES DISTHIT 10 SECONDS AFTER START
19 3 :IN BECOMES DISTHIT 10 SECONDS APTER START
9 SEP2 :TEMP BECOMES HI 110 SECONDS AFTER START
21 SEP2 :SV IS NOT RELIEVED 110 SECONDS APTER START
10 SEP2 :OUT BECOMES HIT 110 SECONDS AFTER START
24 RV3 :IN BECOMES HIT 110 SECONDS AFTER START
25 RV3 :POS IS OPEN 110 SECONDS AFTER START
23 SEP2 :P BECOMES OVERPRESS 110 SECONDS APTER START
26 RV3 :OUT BECOMES HIT 110 SECONDS APTER START
28 5 :IN BECOMES HIT 110 SECONDS APTER START
27 SEP2 :DRUM BECOMES BURST 110 SECONDS AFTER START
22 SEP2 :T BECOMES HI 110 SECONDS AFTER START
29 SEP2 :DRN BECOMES HIT 110 SECONDS AFTER START
30 RV2 :IN BECOMES HIT 110 SECONDS AFTER START
31 RV2 :POS IS OPEN 110 SECONDS AFTER START
32 RV2 :OUT BECOMES HIT 110 SECONDS APTER START
33 3 :IN BECOMES HIT 110 SECONDS AFTER START

Page 48

3. HOW TO USB PAUMET.

The FAUNET program package calculates cutsets and
pathsets/tiesets of fault trees and further allows
availability and reliability calculations. It exists as a set
of FORTRAN programs which can be activated by issuing coaaands
to the RIKKE monitor. (Andrews (1983))-

For the most part the programs communicate by means of input
and output files in a standard 'Fault tree' foraat. The
programs have in some cases parameters, such as, for example
the 'name' of the system or fault tree under investigation, or
the program execution options. Such parameters are requested
by the programs in prompt-response form, unless the
information is already available to the system.

The usual progression of a fault tree analysis with FAUNET is
as follows.

(1) The fault tree description is written as a file on the
disk store in a relatively free format (see appendix C)
together with the primary event failure and repair data
(see appendix D). Instead of a fault tree a network can
be analysed (see appendix C). The fault tree generated
by RIKKE is converted to FAUNETs fixed format by the
command CONVERT.

(2) The fault tree is used as basis for calculation of
minimal cutsets by the command CUTSET or of minimal
path/tiesets by the command TIESET.

(3) The generated cutsets or tiesets may now be used for
probability calculations using bounding techniques by the
command UNAVAILABILITY.

(4) In order to perform an exact probability calculation, the
cutsets or tiesets may be decomposed by issuing the
command DECOMPOSE, whereafter the 'UNAVAILABILITY
DECOMPOSED' command performs the probability calculation.

(5) The resulting modularized cut/tiesets can be cocpletely
evaluated by the EVALUATE command, or they may be
converted into a pruned fault tree by the TREE command.

(6) The cutsets and tiesets can further on be grouped by the
command GROUPING. The grouped sets are stored in a file
with the extension *.CSG/*.TSG.

(7) Using a pruned fault tree generated from minimal cut/tie
sets as input for another tie/cutset calculation often
end up with a set, which is modularized to an even higher
degree; ending up with completely modularized minimal
cutsets or tiesets.

rmge 49

(8) The final cut/tiesets are found in a file on the disk,
fro« where they say be TTPEd cr FRIHTed. The names of
the files consist of the system name followed by an
extension classifying the actual set. As an exaaple
LPDRUH.CSR contains the resulting ainiaal cutsets for the
LDDRUH systea, while LDDRUH.TSG contains the grouped
tiesets for the saae systea. The total set of file naaes
is listed in appendix k and C.

(9) In general after issuing a coaaand that result in an
output on the terminal, a copy of the text will exist on
the disk with the file name *.LIS (* stand for the systea
name). This file may be printed on the typewriter by the
PRIWT command: e.g. PRIK? LDDRUH.LIS.

Page 50

3.1 How to convert a fault tree into cutsets.

As an example of conversion of a fault tree into cutsets and
tiesets we use the fault tree of the LDDRUM nodel made in
section 2.4 and pruned in section 2.5 under the modelname
LD2047.

As mentioned in the start of this chapter the fault tree
to be converted by the command CONVERT:

have

Vhat next:

- R I K K E < = > P A U N E T -
Converter Program [VIA]

Model name:

CONVERT

LD2047

Converting Fault-tree, cutsets or Evaluated cutsets: P

Converting System: LDDRUM
Loading events A gate-numbers
- last event = 244
Comparing events in LD2047-PTX
Converting tree
- dropped, trying *.PTN
Comparing events in LD2047-PTN

10 matching events

Save conversion table

Converting tree

The fault tree text is stored in readable form
and in numeric code in LD2047.FTN.

in LD2047.PTX

The fault tree has now been converted into PAUNET form and can
be analysed by the command CUTSET:

What next:

CUTSET or TIESET: CUTSET
CUTSET of: LD2047
New or Pruned [NEW]: NEW
SYSTEM: LDDRUM
Extract (Yes/No) [Y]: YES
Highest order wanted: 999
TOO ££t̂ 6 * 0
GATE: 1000 SELECTED AS TOP
PACTORIZE
PACTORIZE
PACTORIZE
EXTRACT [Y]
PACTORIZE
PACTORIZE
EXTRACT [Y]

CUTSET

Page 51

PACTORIZE
FACTORIZE
EXTRACT [Y]

LOAD LD2047
EVALUATE
MINIMIZE
OVERFLOW

FINISH LD2047
REDUCE
OUTPUT

RESULT OP LDDRUM

REDUCED CUTSETS:
1. SET OP ORDER 1

1 .

EVALUATED CUTSETS:
13- SETS OF ORDER 3
2. SETS OF ORDER 4

15.

The CUTSET command have default NEW fault tree and the answer
YES to the question 'extract ?'. If the fault tree is pruned
and no extract is wanted the command is CUTSET PRUNED NO.
Further on the highest order is default 999 and the top gate
0. If the tree should not be analysed using the first gate in
the file as top gate, then another gate number must be
assigned in the command.

If you use the command CONVERT again you can convert the
cutsets into readable text which is stored in a file with the
extension *.LIS:

What next: CONVERT

- R I K K E < = > F A U N E T -
Converter Program [V1A]

Model name: LD2047
Converting Fault-tree, Cutsets or Evaluated cutsets: C

Converting modularized cutsets
Text loaded - last event/state = 238

- R I K K E / F A U N E T -
Cutset P r i n t e r [V1A]

The cutset text is stored in: "LD2047.LIS"

The content of the file LD2047.LIS is:

Page 52

What next: TYPE LD2047.LIS

Pile: LD2047.LIS

Minimal cutsets found in model: LD2047 PROM LDDRUM

Top event in SEP2 :DRUM BECOMES BURST

Complex Module 1 fails if:
1)Fault in RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :OUT BECAME SCUM 21 SECONDS AGO

2)Pault in RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :OUT BECAME DISTHISUPPC 30 SECONDS AGO
and in RV2:IN DID NOT BECOME COMPLOBACKPC 30 SECONDS AGO

3)Fault in 2 :WS BECAME BLOCKED 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

4)Pault in RV :OUT BECAME HISUPPC 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

5)Fault in TRA2 :WS BECAME LOINPUT 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

6)Pault in TRA2 :WS BECAME PAILLO 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

7)Fault in REG2 :WSTATE BECAME PAILLO 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOPF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

8)Fault in REG2 :PWR BECAME FAILOFF 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOPF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

9)Fault in RV2 :WS BECAME BLOCKED 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOFF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

10)Fault in REG2 :SET BECAME ERROR 30 SECONDS AGO
and in RV :OUT DID NOT BECOME SHUTOFP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO

Pag« 53

H)Pault in RV :OUT DID NOT BBCOME SHUTOPP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV2 :IK BECAME DISTHIBACKPC 30 SECONDS AGO
and in RV :OUT DID NOT BECOME COMPLOS'JPPC 30 SBCONDS AGO

12)Pault in RV :OUT DID NOT BECOME SBUTOFF 20 SBCONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV2 :IN BECAME SHUTOFF 30 SECONDS AGO

13)Pault in RV :OUT DID NOT BECOME SHUTOFF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV2 :IN BECAME HIBACKPC 30 SECONDS AGO

14)Pault in RV :OUT DID NOT BECOME SHUTOFP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :OUT BECAME DISTHIT 1110 SECONDS AGO

15)Fault in RV :OUT DID NOT BECOME SHUTOFP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :OUT BECAME HIT 110 SECONDS AGO

Cutsets of 1 . order:

1)Fault in module # 1

The tiesets are made by the command TIESET:

What next: TIESET

CUTSET or TIESET: TIESET
TIESET of: LD2047
New or Pruned [NEW]: NEW
SYSTEM: LDDRUM
Extract (Yes/No) [T]: YES
Highest order wanted: 999
Top gate: 0
GATE: 1000 SELECTED AS TOP
PACTORIZE
PACTORIZE
PACTORIZE
EXTRACT [Y]
PACTORIZE
PACTORIZE
EXTRACT [Y]
PACTORIZE
PACTORIZE
EXTRACT [Y]

LOAD LD2047
EVALUATE
MINIMIZE
OVERFLOW

Page 54

FINISH LD2047
REDUCE
OUTPUT

RESULT OP LDDRUM

REDUCED TIESETS:
1. SET OP ORDER 1

1 .

EVALUATED TIESETS:
2. SETS OP ORDER 1
4- SETS OP ORDER 15

6.

As well as with the CUTSET command you can define othe options
than the default.

Page 55

3-2 Analysis of cutsets by PAUNET.

Both the cutsets and the tiesets can be evaluated by the
command EVALUATE. The generated cutsets or tiesets are
expanded from the complex events to an expression in terms of
the original basic events. As an example we have have chosen
to evaluate the cutsets (which are default) of the
LDDRUM-model (LD2047).

What next: EVALUATE

Evaluate complex events in system: LD2047
Prom CUTSET or TIESET? CUTSET

RESULTING EVALUATED CUTSETS IN LDDRUM

13- CUTSETS OP 3- ORDER
2. CUTSETS OP 4. ORDER

15. CUTSETS IN TOTAL

The minimal cutsets or tiesets can be converted into a
modularised fault tree. By alternating between cutset and
tieset calculations on a tree, the tree can be reduced to its
smallest form. The command TREE works default on cutsets.

What next: TREE

Make a fault-tree from CUTSET or TIESET - [CUTSET]: CUTSET
CUTSET result of: LD2047
Grouped, Evaluated or Not (G/E/N) [N]? N
CONVERTING CUTSETS OP LDDRUM INTO A PRUNED TREE
PRUNED TREE MADE

Page 56

4. HOW TO CREATE OR UPDATE A LIBRARY.

A library useable for the RIKKE system contains both a graphic
and a generic library part.

The basic elements in a graphic library are component forms
identified by the generic type of the component as used
elsewhere in the RIKKE system. Each generic component type
may exist in several graphic forms. The actual form is
identified by the name (number) of this form.

The graphic libraries uses the extension #.DGL, where the
generic libraries uses the name #.GCL. A full list of the
available graphic libraries is therefore obtained in VAX or
PDP-11 monitor by asking for these extensions:

DIR *.DGL
12-sept-84
LOGIC .DGL 50 07-Feb-82
PLOW .DGL 50 04-Nov-81
DEMO .DGL 60 22-Dec-81
HAZLB2.DGL 82 27-Jan-84

This example shows 4 available graphic libraries named LOGIC,
DEMO, PLOW and HAZLB2.

The extension *.DGL is an abreviation for Draft Graphic
Library, and the extension *.GCL is an abreviation for Generic
Component Library. A list of all extensions used can be found
in appendix A.

By typing DIR *.GCL (Generic Component Library) the computer
will show all available generic libraries and it will be
possible to see whether there is both a graphic and a generic
library.

The graphic libraries are maintained by the command: GRAPHIC
(programs GRALIB, GLEDIT and GLPLOT). The use of these
programs (command: GRAPHIC) is described in section 4.1.

One or more component forms may be extracted from a library or
may be created or modified interactively using the GLEDIT
program, and later used to update the same or another library.
The extract has the file extension *.GML. A completely new
library may be created using these extracted forms.

It is possible to draw a set of (or all) graphic forms in a
library (command: GRAPHIC, subcommand: PLOT).

The description of handling the graphic and generic files are
split into two. Section 4.1 (with subsections) describe the
creation and handling of the graphic library, while section
4.2 (with subsections) take care of the generic library.

The existance of both a graphic and generic library does not
ensure compatibility. This phenomenon is described in section
4.3.

Page 57

4.1 How to create a graphic component.

The graphic library is called from the RIKKE monitor by the
command GRAPHIC as seen in the following example.

What next: GRAPHIC
RIKKE
Graphic Librarian
Graphic Library name: DEMO
What now:

GRAPHIC is now ready for subcommands. The operator may at any
step enter a carriage return to force GRAPHIC to print a list
of all possible commands at any step.

The legal answers to the "What now:" query is shown in table
below:

Table 4.1 Subcommands in GRAPHIC.

Create - Create a new graphic library
from graphic forms.

Update - Update a graphic library
by replacing forms or adding new.

Make - Make new graphic form (calling GLEDIT).
EDit - Edit graphic forms (calling GLEDIT).
Plot - Plot graphic forms (calling GLPLOT).
LISt - List all graphic forms in library.
Extract - Extract graphic forms from library.
Delete - Delete graphic forms from library.
LIBrary - Define another library name.
Stop - Stop execution [return to RIKKE].

A command is activated by entering enough letters for a full
identification as indicated by the capitals in the commands
listed above. The rest of the word is optional (but it must
match). E.g. EX or EXTR or EXTRACT all activate the
extraction of forms.

In order to CREATE a new library or UPDATE an old one, we must
have separate forms either made by GLEDIT (command: MAKE) or
EXTRACTed from elsewhere. The PTLIB3 distribution contains a
set of forms for that library.
The commands EDIT, PLOT, EXTRACT or DELETE all ask for
identification of the individual components by their generic
type and graphic form.

The query "Generic type :" may be answered by the actual
generic type name (max. 6 characters, letters or digits).
When a type name is entered, GRAPHIC will ask "Graphic Form:".
Here the name of the form (max. 6 characters) should be
entered, or ALL to indicate all forms of this component. The
answer ALL to the query "Generic Type:" will select all

Page 58

components in all forms within the library, while the answer ?
will scan the library, and for each possible component and
form ask for acceptance or rejection of this particular
element.

The acceptance query looks like the following example:

Type:
Form:

PUMP
1

The response to this question should be Y or YES for accept, N
or NO for rejection or S (STOP) for rejection of this and all
remaining component forms. After extraction, the name of the
file containing the extract is shown on the terminal.

As an example of creating a new graphic form, we will follow
the creation of a tank step by step. Prom the initial sketch
(figure 4.1) we can see that we need to make lines, arcs and
circles to fullfill the graphic form. In addition we have to
specify the ports of the component.

our

IN

LEV

Figure 4.1 Initial sketch of a tank.

The drafting is initiated by the command MAKE. We are
prompted for the name of the graphic library file and then get
a drawing table on the screen. By the command ADD we get a
gleaming sight on the board and can start to draw.

What now:

R I K K E
Graphic component editor [V1C]
What now: MAKE
Graphic Library-file:

MAKE

TANK

Page 59

First we point out the center of the picture and aark it with
a C (for center). All the possible Barkers can be shown on
the screen by typing a question Bark.

The lines are made by positioning the cursor at the first end
of the and nark the point by P (for point out), positioning it
at the other end and type an L (for line).

The arcs at the end and top of the tank are Bade by pointing
out one of the ends of the arc and type P. Then pointing out
a point on the arc, type space, and positioning at the other
end of the arc and type A (for arc).

The circle are made by positioning the cursor on the periphery
of the circle and type a space. The cursor are moved to the
center of the circle, and we type an 0.

When the drawing is finished we need to add ports. We
position the cursor, where the first port should be and type a
number according to the orientation of the as you can see it
in figure 4-2. We are then prompted for the name of the port.

1

•> 0

y

3

Figure 4-2 Orientation of the ports.

When the drawing session is finished we type X to exit from
the drawing table. We save the graphic form by the command
SAVE and are prompted for the type and form of the component.

SAVE
Type: TANK
Form: 1

The position of the component name on the draft is pointed out
and confirmed by typing E. When the saving is finished we get
a new drawing table, but the drawing can be terminated by
typing X and END.

Page 60

4-1-1 How to >?dit a graphic component.

EDIT
Generic type: TFTANK
Graphic form: 1

And we see the existing graphic image of the component TPTANK
on the screen. We want to add some new ports to an existing
graphic form. First we add a level sensor. The step size on
the component drawing is too big, and we want to make it
smaller. The standard step size is 10 and we change it to 2
by typing:

STEP
Grid/step size [10]: 2

We then redraw the component with the smaller step size by
typing:

SHOW

To add the level sensor we type:

ADD

and we get a sight on the screen. The gate from the tank to
the level sensor is marked by typing P. The length of the
gate is determined and the line is drawn by typing L. The
level sensor itself is drawn in a similar way. The port from
the level sensor is defined by the sight and the desired
orientation of the port is chosen by typing 0, 1, 2 or 3
(according to the direction shown in figure 4.2).

Page 61

Table 4.2 Sub-subcommands in Graphic Editor.

Add
CEnter
ENd
ERase
EXit
POrm
Grid
NAme
OK
Quit
REAd
REDraw
REMove
RESt
REWind
SAve
SCale
SHow
SKip
STep
TYpe

—
-
—
—
-
—
-
-
-
—
-
-
—
-
-
—
—
-
-
-
-

Enter interactive graphic vector mode.
Change center of figure.
Finish.
Erase area.
Finish - present figure not added.
Change name of form.
Specify grid (ft step).
Change position of component name (type).
Accept this figure - take next.
Drop all.
Load next from input.
Repeat the figure as it will be stored.
Remove a port.
Accept this & rest of input.
Rewind input for repeated entrance.
Accept this figure - without taking another.
Change sealing of figure.
[=REDraw].
Drop this figure - take next.
Specify steps for addressable points.
Change figure type.

Page 62

The program answer:

Portname: LEV

We have now made the desired change in the graphic component
and want to exit from the adding system. We type

RIKKE
Graphic Component Editor
What now:

RIKKE
Graphic Librarian
Graphic Library Name:
What now:
Prom graphic file:
Reading type: "FTTAHK" - Form:
What now:

X
OK
END

UPDATE

PTLIB3
UPDATE
PTTANK

STOP

Page 63

4.1.2 How to include a graphic component.

In order to Bake a new graphic library or update an existing
with graphic components from other libraries, you use the
facilities EXTRACT and UPDATE. The first step is to enter the
graphic library fro« which you want to extract the graphic
component, and then use the command EXTRACT:

What next:

- R I K K E -
Graphic Library Editor [VIA]

Library name:

What now:

Extract Component type:
Extract Graphic fora:

EXTRACTING: COLUMN
Component extracted [in COLUMN.GML]
Extract Component type:

GRAPHIC

PTLIB3

EXTRACT

COLUMN
1

<CR>

You have now extracted the graphic component COLUMN from
PTLIB3, and the informations are stored in a file named
COLUMN.GML. The next step in including the component to the
new library CHELIB is to change library and then use the
command UPDATE.

What now:

Library name (PTLIB3):

What now:

Input file type Lib, Gml or New [NEW]:

Read from file:

Expanding Database
READING TYPE: COLUMN 1009 -

TYPE: COLUMN - INSERTED • 58
Read from file:

What now:

LIB

CHELIB

UPDATE

GML

COLUMN

<CR>

STOP

Page 64

4.2 How to create a generic component,

In the RIKKE system you are able to make your own components,
and just as well as the program needs a graphic model of the
components, it needs a generic part, which tells what happens
when the conditions are changed.

The generic part consist of a definition of the ports of the
component, several small fault trees, a list of spontaneous
events and possible working states.

All the attributes in the generic component is listed in table
4.4.

To make a new component you need to define the ports and the
transfer functions. The variable list is generated
automatically, when you use new variables in the transfer
function, and it serves as a control list. The other
attributes are used when nessesary.

You call the generic library editor with the command EDIT:

What next: EDIT
-RIKKE-

Gereric Library Editor

Library name: CHELIB

The subcommands are shown in table 4-3«

Table 4-3 Subcommands in EDIT of generic library.

EDitor - Call the interactive editor.
LISt - List content of library.
PRint - Print component(s) formatted.
Type - Type component(s) directly on console.
EXTract - Extract one or more components from library.
Update - Update a library by

replacing components or adding new.
INSert - Add new components to

library unless already existing.
REPlace - Replace old components in library by a new one.
PAck - Extract in packed form.
DELete - Delete components from library.
CHange - Change types of components in a library.
COPy - Copy one component changing its generic type.
WHAt - Tell about editors work-copy and free space.
ROom - Tell how much free space in database.
CLaim - Claim extra workspace in database.
LIBrary - Specify library.
CReate - Create a new library from source.
INItial - Create a new (empty; library.
Stop - Stop execution - back to monitor.

Page 65

We now want to make an entirely new component. We use the
subcommand EDIT, which allows us to make the new components
interactively:

(EDITOR) Make, Get, Copy, REStore,
List, What or Exit:

Make initial work copy af new generic type:
Initial (empty) work copy made -

ready to MOdify.

Editor is working on : VALVE in block: 25

(EDITOR) Make, Get, Copy, REStore, EDit,
REMove, List, What or EXit:

(COMP.) Attribute:

EDIT

MAKE
VALVE

EDIT

We have now entered the editor, made a work copy for a
component called VALVE, and are ready to specify ports,
spontaneous events etc. All the possible attributes to a
component are shown by typing <CR>:

Table 4.4 Legal attributes of generic models.

VL - Variable list
PL - Port list
TP - Transfer functions (Mini-fault-trees)
NS - Normal states
IS - Initial states
WS - Working states
PS - Possible states
SE - Spontaneous events
LP - Latent failures

We start to define the ports of the VALVE by typing PL. The
ports of the VALVE are named IN, OUT and POS:

Page 66

(COMP.) Attribute:

(Attr: PL)-Add-What-End:

Port:

Port;

Port:

Port:

(Attr
1
2
3

PL)-Add-Mod-Print-Last-What-End:
(IN (IN))
(OUT (OUT))
(POS (POS))

PL

ADD

IN (IN)

OUT (OUT)

POS (POS)

<CR>

PRINT

(Attr: PL)-Add-Mod-Print-Last-What-End:

In the paranthesis we have written the same names as the port
names. But if we want to give some of the ports other
variable names in the generic system and still have the
graphic name saved to fit with the graphic component, we write
the original name first and the variable name in the
paranthesis.

To return to the editor we write END and EDIT, and we are then
ready to create the transfer functions of the VALVE:

(EDITOR) SAve, SWap, EDit, REMove,
List, What or EXit:

(COMP.) Attribute:

(Attr: TF)-Add-What-End:

- Transfer Function - Cause -
Event:
Condition -
State:
State:
Delay:
Effect -
Event:
Event:

- Transfer Function - Cause -
Event:

END

EDIT
TF

ADD

IN -> HIGHPRES

POS IS OPEN
<CR>
0

OUT -> HIGHPRES
<CR>

Page 67

As you can see the program first ask for a cause event, then
about which conditions must be fulfilled before the effect
event happens, and finally about the effect events. If there
is no condition you just give a <CR>. The program also ask
for a time delay. You can define several condition states and
effect events. When you have finished defining all transfer
functions you type <CR>.

<CR>

(Attr: TF)-Add-Mod-Print-
Last-What-End: PRINT

1: ((IN -> HIGHPRES)((POS IS OPEN))
(0)((0UT -> HIGHPRES)))

(Attr: TF)-Add-Mod-Print-
Last-What-End: END

(EDITOR) SAve, SWap, EDit, REMove,
List, What or EXit:

When we have finished making the generic model we save the
work-copy:

SAVE
Saving - 1 7 -
Done
(EDITOR) SAve, SWap, EDit, REMove,

List, What or EXit: EXIT
What now: STOP

The generic editor is always working on a work copy separate
from the copy of the component found in the library. This
means that it is necessary to save a work copy before the new
component (or new version) is active in the library. If the
editing is interrupted and the work copy is not saved, the
editor keeps the work copy.

When a work copy is saved, the former version is stored as
backup copy. The backup copy can be recovered by using the
command RESTORE in the editor.

Page 68

4-2.1 How to edit a generic component.

In the RIKKE program, you are able to modify an existing
component by a similar procedure as the one used in making new
components:

What next:
-RIKKE-

Generic Library Editor

Library name:
What now:

(EDITOR) Make, Get, Copy, REStore, List,
What or Exit:

Get component type:
Copying Component
New Edition: 2

(EDITOR) Make, Get, Copy, REStore, List,
What or Exit:

(COMP.) Attribute:

(Attr: PL)-Add-Mod-Print-Last-What-End:
1 :
2 :
3:

(IN
(OUT
(POS

(IN
(OUT
(POS

))
))
))

EDIT

CHELIB
EDIT

GET
VALVE

EDIT
PL

PRINT

(Attr: PL)-Add-Mod-Print-Last-What-End:

We can now ADD ports, and we can MODIFY the existing ports:

MOD

(Modify: PL)-DElete-DUplicate-Replace-
Change-Print-First-Last-Next-etc.

If we want to DELETE a port, we type DELETE and the number of
the port:

Do you really want to delete attribute
"PL" - element 4

Done

(Modify: PL)-DElete-DUplicate-Replace-
Change-Print-First-Last-Next-etc.

DELETE 4

YES

Page 69

Another possibility is to REPLACE a port by a new port by the
command REPLACE. The same command is used when you are
changing transfer functions:

(EDITOR) Make, Get, Copy, REStore, List,
What or Exit:
(COMP.) Attribute:

EDIT

(Modify: TF)-DElete-DUplicate-Replace-
Change-Print-Pirst-Last-Next-etc.
: PRINT 3
3: ((IN -> LOWTEMP)
((OUT ISNT COMPLOWTEMP)) (0)((OUT -> LOWTEMP)))

(Modify: TF)-DElete-DUplicate-Replace-
Change-Print-First-Last-Next-etc.

Modifying element 3

Replace variable:

Replace value:
by:

Replace value:

Replacing 0 variable, and 1 value - ok ?
Copying 3 to 1

(Modify: TP)-DElete-DUplicate-Replace-
Change-Print-First-Last-Next-etc.

REPLACE 3

<CR>

LOWTEMP
HIGHTEMP
<CR>

YES

By using the other commands in the modify system you are able
to DELETE ports or transfer functions from the generic model,
DUPLICATE whole parts or REPLACE elements of the attributes.

Page 70

4.2.2 How to include a generic component.

When we make a new library, we may often wish to use old
components from other libraries, and just change them or add a
few new components. By using the EDIT command we can EXTRACT
generic forms from existing libraries and INCLUDE them in new
libraries. The first step in this routine is to EXTRACT the
generic forms.

What next:
-RIKKE-

Generic Library Editor

Library name:
What now:
Extract Component type:
EXTRACTING: VALVE
Component extracted [in VALVE .CMP]
Extract Component type:
What now:

EDIT

PTLIB3
EXTRACT
VALVE

<CR>

To INSERT the EXTRACTed component type, we change the library
to the new home in EDIT and use the command INSERT:

Library name [FTLIB3]:
What now:
Input file type Lib, Cmp or New [NEW]
Read from file:
Expanding Database
READING TYPE: VALVE

TYPE: VALVE
Read from file:
What now:

- - - 797 -
- INSERTED 0 8

LIBRARY

CHELIB
INSERT
CMP
VALVE

<CR>
STOP

We have now EXTRACTed the component type VALVE and INCLUDEd it
in the new library.

Note that it is very important to ensure that the values used
for the different variables are compatible with the new
library.

Page 71

4-3 How to check a library.

In the RIKKE system a command named CHECK is found. This
command is used for checking a library in respect to
compatibility between the graphic and generic forms. The
command checks that all ports on the graphic component, the
ones we use in drawing plant on screen, is defined in the
generic system.

From the list of available libraries we decide which one to
use, and start running the RIKKE system:

RIKKE2

Welcome to RIKKE2

What next:

CHECK

! RIKKE
! LIBRARY CROSSCHECK [VIA]

! Library name:
!.b2;Now we print the chosen library name (without the
extension).

FTLIB3
.b2;An example of a test responce is:

Generic type: DUMMY, has no graphic equivalence

Generic type: FLPFLP, has no graphic equivalence

Graphic type: AIRBRN, has no generic equivalence

Port mismatch in component: CHECKV - form: 1
Generic Graphic - ports without match:
IIXI II " _ _ _ _ _ _ * '

11 m 11 » ' _ _ _ _ _ _ "

lip 11 "______"

The Libraries are incompatible

The first message concerns a component called DUMMY. This
component has no graphic equivalence. For a normal component
this would be a failure, but because DUMMY is a "dummy
component" for the generic libraries, there is no need for a
graphic equivalence. The purpose of DUMMY is to serve as
starting point for new components.

Page 72

The next three messages is on specific components and
indicates that component FLPFLP and AIRBRS are unknown to the
generic and the graphic library respectively. Component
CHECKV can not be used because the ports does not match
between the generic and the graphic part of the library.
These components MUST NOT BE USED in any work including this
library before the incompatibilities are repaired.

A mismatch between ports in graphic and generic systems would
result in INCOMPATIBILITY between libraries. The reason for
incompatibility in the example above is that the component
CHECKV does not have graphic ports with the names of "P", "T"
and "P".

Page 73

5- COMMANDS IN RIKKE SYSTEM.

The most common RIKKE commands are

MODEL - define or change model name
WHAT - ask for current model
STOP - stop execution of RIKKE session

DRAFT - activate model drafting
MAKE - build up a plant model
FAULT - produce a fault tree
TEXT - add readable text to fault tree
FTPLOT - produce a plotting file / fault tree (A4 sheets)
FTSUPER - produce a plotting file / fault tree on one sheet
PLOT - send plotting file to actual plotter
VIEW - send plotting file to graphic display screen
FTSHOW - plot a fault tree on typewriter
CUT - prune fault tree of unwanted event types

An information about all of the commands in the main RIKKE
system can be obtained by typing HELP, when you are in the
RIKKE monitor. At the following pages you have a short
description of these commands.

ANALYZE

The command is used to analyse a fault tree.
The syntax of the command is:

ANALYZE [ITEM,ELEMENT] <item> [MODEL] <model name>

CALL

The CALL command is used to call and execute a module in the
RIKKE package with a model name.
The syntax of the command is:

CALL [PROGRAM] <program name> [MODEL] <model name>

CCPLOT

The general plotter program used by both FTPLOT and CDPLOT.
The syntax of the command is:

CCPLOT [MODEL] <model name)

CCSUPERJPLOT

The general plotter program used by both FTSUPER PLOT and
CDSUPER_PLOT.

The syntax of the command is:

CCSUPER_PLOT [MODEL] <model name>

CDCOMBINE
Combines two cause-consequence diagrams.
The syntax of the command is:

CDCOMBINE <new name> [MODEL,ROOT] <name of root>

Page 74

CDPLOT

Plot the generated cause-consequence diagram in A4 sheets.
The syntax of the command is:

CDPLOT [MODEL] <model name>

CDSHOW

Show the generated cause-consequence diagram on the
typewriter.

The syntax of the command is:

CDSHOW [MODEL] <model name)

CDSUPER PLOT
Produce a plotting file for a cause-consequence ciagram on one
sheet (not broken in A4 sheets).
The syntax of the command is:

CDSUPER_PLOT [MODEL] <model name>

CDTEXT

Add readable text to cause-consequence diagrams.
The syntax of the command is:

CDTEXT [MODEL] <model name>

CHECK

Check the compatibility between the generic and the graphic
part of a Library.
The syntax of the command is:

CHECK [LIBRARY] <library name>

CODE

The syntax of the command is:

CODE (WANT[C0MMAND,KEYW0RD]=ALL:A30,
ALL[ALL]=KEYW0RDS:A3O,0N[0N]=TT,
WHAT=C0DE:-,F0R[F0R=F0R]:-)

COMBINE

General combination program for both PTCOMBINE and CDCOMBINE.
The syntax of the command is:

COMBINE <new name> [MODEL,ROOT] <name of root>

Page 75

CONVERT

Converts a fault tree in RIKKE form to PAUNET form.
The syntax of the command is:

CONVERT <item> [MODEL] <model name>

legal items are: FT for fault tree
CS for cutsets
EV for evaluated cutsets

CONSEQUENCE

The consequence command is used to generate a
cause-consequence diagram.
The syntax of the command is:

CONSEQUENCE [COMPONENT] <component name> [EVENT] <event>
[MODEL] <model name>

CUT

The CUT command allows pruning of unwanted event types in the
fault trees before plotting. When the CUT command is given
the program asks which types of cutting are required. A
detailed description is found in section 2.5-
The syntax of the command is:

CUT [MODE] <mode number> [MODEL] <model name>

DEBUG

Give an axplanaision of the commands. The facility is
resetted by a carriage return.
The syntax of the command is:

DEBUG

DRAFT

Activate model drafting. Further descriptions of the
subcommands can be found in chapter 2 and in (Larsen, 1982).
The syntax of the command is:

DRAFT <type> [LIBRARY] <library name>
[MODEL] <model name>

Legal types are: OLD for old draftings
NEW for making new drafts.
CONTINUE for working on a draft data base.

EDIT

The EDIT command envokes the program GENLIB and permits
editing in the generic models from a given library.
The syntax of the command is:

EDIT [LIBRARY] <library name>

Page ?6

EXECUTE

The execute command permits execution of DAFRSS command files.
A further description is found in section 2.6.
The syntax of the command is:

EXECUTE [PILE] <file name> [MODEL] <model name>

EXTRACT

Extract forms from a Library in a separate file.
The syntax of the command is:

EXTRACT [TYPE] <generic type> [LIBRARY] <library name>

PAULT

The command PAULT generates fault trees. The command is
appended by the name of the component in which the event
happens, and the type of event.
The syntax of the command is:

PAULT [COHPOHEHT] <component name> [EVENT] <event>
[OPTIOHJ <option type>

PIX

Repair an uncomplete fault tree. Legal types are:
B for Break
C for Continue
D for max. Depth before break
E for Event list
L for Loop stop
N for Hone (default)
S for Show (not on VAX)
T for Time

The syntax of the command is:

PIX [MODEL] <model name>

PTCOMBIHE

The PTCOMBIHE command is used to combine two fault trees.
The syntax of the command is:

PTCOMBIKE [AS] <new name> [MODEL.ROOT] <name of roots>

PTEDIT

The command PTEDIT permits editing of a fault tree. You can
cut out a piece or find certain events in the tree.
The syntax of the command is:

PTEDIT A[AS],W[D0]fK[0N],[MODEL] <model name>

Page 77

FTPLOT

Produce a plotting file for a fault tree on A4 sheets.
The syntax of the command is:

FTPLOT [MODEL] <model name>

PTSHOW

Show the generated fault tree on the typewriter.
The syntax of the command is:

PTSHOW [MODEL] <model name>

FTSUPBRPLOT

Produce a plotting file for a fault tree on one sheet (not
broken in A4 sheets).

The syntax of the command is:

FTSUPER_PLOT [MODEL] <model name>

FTTEXT
PTTBXT changes the text form of a fault tree from numeric form
to text form.
The syntax of the command is:

FTTEXT [MODEL,IH] <model name)

GRAPHIC

The GRAPHIC command permits graphic editing of graphic
libraries.
The syntax of the command is:

GRAPHIC [LIBRARY] <library name> [TYPE] <component name>
[MODEL] <model name>

Legal component names are all components in library and the
type ALL which extracts all types.

HELLO

HELLO displays the initial welcome screen.
The syntax of the command is:

HELLO

HELP

Gives information about which commands you can use, and what
syntax they use.
The syntax of the command is:

HELP [ABOUT] <name of command>

Page 78

HOPSA

HOPSA is short for Human Operator Safety Analysis and permits
an analysis of start up/shut down procedures or other
procedures. This program has not been released.
The syntax of the command is:

HOPSA

LIBRARY

Defines or redefines the name of the Library you want to work
with or on.
The syntax of the command is:

LIBRARY [LIBRARY] <library name) [TYPE] <generic type>

LIST

The LIST command enables you to see one or more files on the
screen.

The syntax of the command is:

LIST [PILE,FILES] <file name(s)>

MAKE
The MAKE command initiates the building of a plant model.
The syntax of the command is:

MAKE [MODEL] <model name>

MINI_FAULT_TREE_PLOT

Plots the mini fault trees of a component.
The syntax of the command is:

MINI_PAULT_TREE PLOT [LIBRARY] <library name>
{"COMPONENT,COMPONENTS] <component name(s)>

MODEL

Defines or redefines the model you are working with.
The syntax of the command is:

MODEL [NAME] <name of model>

NUMBER

Renumber the events in a fault tree.

The syntax of the command is:

NUMBER [MODEL] <model name>

Page 79

PLOT

Send plotting file to the plotter.
The syntax of the command is:

PLOT [MODEL] <model name>

PRINT

The PRINT command activates typing of one file or more on a
printer.

The syntax of the command is:

PRINT [PILE,PILES] <file name(s)>

RT11

Returns you to the PDP-11 monitor for one command.
Same command as the the VMS command, but only used on the
PDP-11.

RUN

Call a seperate program for execution, return to RIKKE on
exit.

The syntax of the command is:

RUN [PROGRAM] <program name>

STOP

The STOP command stops the execution of the RIKKE program.
string handling

The string manipulating commands may be used in connection
with more generel command files. They were primarily
developed in connection with the DAPHNE code facility (not
released with RIKKB-II).

APPEND

The function APPEND is a string manipulator which appends the
argument of the function to the storage called RESULT. A
space will be imbedded.
The syntax of the comrand is:

FUNCTION APPEND [NEW]

CONCAT

Store an argument in the RESULT buffer. If CONCAT have two
arguments they will be combined.
The syntax of the command is:

FUNCTION CONCAT [WITH]

Page 80

FIRST PART

Scan the input argument (default RESULT) for the first space
and the first "half" is stored as new result.
The syntax of the command is:

FUNCTION FIRST_PART [OF]

PUSH

Save the argument in the result buffer (POP).
The syntax of the command is:

PUSH

PROMPT

Accept one argument. The value is used as prompt for a query
on the screen. An answer is expected from the keyboard. The
answer is stored in the result buffer.
The syntax of the command is:

FUNCTION PROMPT

QUIET

Suppress "unnescessary" output prompts, where the value is
already supplied, for a limited number of steps.
The syntax of the command is:

QUIET <integer>

REST

Act like FIRSTPART except that the final result is the second
"half" of the text.

The syntax of the command is:

FUNCTION REST

WRITE
Type the argument text on the console.
The syntax of the command is:

WRITE

SUPER_PLOT

Plots the model in one large drawing.
The syntax of the command is:

SUPER PLOT [MODEL] <model name>

Page 81

SYNTAX

Gives the information about the syntax of a given coamand.
The syntax of the command is:

SYNTAX [FOR] <name of command>

TEXT

Transform fault tree text from numeric to readable form, and
add it to the fault tree or cause-consequence diagram.
The syntax of the command is:

TEXT [MODEL] <model name>

TYPE

Types a file on the screen.
The syntax of the command is:

TYPE [PILE,PILES] <file name(s)>

UPDATE

Update a Library by replacing forms or adding new.
The syntax of the command is:

UPDATE [LIBRARY] <library name> [TYPE] <generic type>

VIEW

Send plotting file to graphic display screen.
The syntax of the command is:

VIEW [MODEL] <model name>

WHAT

Ask for the name and information about the current model.

VMS

Permits one command to be executed in the monitor on the VAX
computer (VMS). When this command has been executed you are
returned to the RIKKE session in hand.

Page 82

HOW TO GET HELP.

In the RIKKE Monitor the command HELP produces the following
information:

The most common RIKKE commands are

MODEL - define or change model name
WHAT - ask for current model
STOP - stop execution of RIKKE session

DRAFT - activate model drafting
MAKE - build up a plant model
FAULT - produce a fault tree
TEXT - add readable text to fault tree
FTPLOT - produce a plotting file / fault tree (A4 sheets)
FTSTJPER - produce a plotting file / fault tree on one sheet
PLOT - send plotting file to actual plotter
VIEW - send plotting file to graphic display screen
FTSHOW - plot a fault tree on typewriter
CUT - prune fault tree of unwanted event types
DIAGRAM - create or modify Block Diagram

Information available:

ANALYZE CALL
CDCOMBINE CDPLOT
CDTEXT CHECK
CONSEQUENCE
EXECUTE EXTRACT
FTEDIT
FTTEXT
LIBRARY
MODEL
STOP
SYNTAX
WHAT

FTPLOT
GRAPHIC
LIST
NUMBER
string
TEXT
VMS

CDPLOT CCSUPER_PLOT
CDSHOW CDSUPER PLOT
CODE COMBINE CONVERT
CUT DRAFT EDIT
FAULT FIX FTCOMBINE
FTSHOW FTSUPER_PLOT
HELLO HELP HOPSA
MAKE MINI FAULT TREE PLOT
PLOT PRINT RUN

handling SUPER PLOT
TYPE UPDATE VIEW

Topic:

You can type the command, you wish to know more about, and the
HELP facility answer:

Page 83

DRAFT

Activate model drafting.
A complete description of the
subcommands can be found in:
GRACE USER MANUAL (RISO-M-2343)
Call GRACE

Syntax for the command:

DRAFT <type> [LIBRARY] <library name)
[MODEL] <model name>

Legal types are: OLD for old draftings
NEW for making new drafts.
CONTINUE for working on a draft data base.

Additional information available:

Parameters Qualifiers
/ALL
/ALTER
/COMPONENT
/DRAW
/DUPLICATE
/ERASE
/PIND
/GRID
/IN
/LIBRARY
/LINK
/MOVE
/OUT
/QUIT
/REDRAW
/RELINK
/SAVE
/SETUP
/SHIFT
/STOP
/TEXT
/UNLINK
/WINDOW

DRAFT Subtopic:

If you want to know about one of the subtopics, you type the
name. If you don't, you just press the carriage return, and
the HELP system returns to the maingroup of topics. If you
don't want to know anything further, you press the carriage
return until the RIKKE monitor answers "What next".

In all other parts of the RIKKE system a question mark or a
carriage return will produce a list of information about the
available commands and their use.

It is the intention that the RIKKE system should be a self
teaching system. The program gives prompts indicating when it

Page 84

input required. In the case where prompts are uninformative,
such as the prompt "What next:", pressing the return key will
result in a listing of the possible commands which can be
given. When in the RIKKE monitor, typing HELP results in a
listing of the available commands for users to learn to use
the RIKKE system with no help at all but the help provided by
the computer itself.

In general, if in doubt, press the carriage return key. This
will either take you back to an earlier stage of command
input, or will produce some comment intended to help you out
of the difficulties.

Page 85

7. THE LIBRARIES.

Each library consists of a number of components with a generic
and a graphic equivalence. In a library we have certain rules
for the levels (or values) of the variables and certain
specified names of the failure modes of the components. This
is to certify that a level of a variable in one component can
be recogniced in the other components and that the failure
modes are understood.

The libraries PTLIB3 and HAZLB2 do not have the same sets of
levels and failure modes. This means that a component in one
library do not match the components in the other library. In
the following sections (7.1 and 7.2) we will describe the
libraries and give an example of a component in each library
so the difference may be seen more clearly.

Page 86

7.1 PTLIB3.

In the library PTIIB3 a range of 63 components was made:

Table 7-1

Component:

ACTUAT
AIRREG
AND
CCONT
CHECKV
COLUMN
CONDEN

CTANK
CVALVE
DELAY
DIV
DIVVLV
DRAIN
DWNCMR
EVAP

EVAPD

PLPPLP
PORGAC
FURN

HEATER
HEX
HW
INVERT
KODRUM

LEVSNS
LIQPRN

LOAD
MANU
MIX
MIXVLV
NOT
NOZZLE
NREAC
OCONT
OPTANK
OR
PIPE
PSH
PSL
PSN
PUMP
PUSHER
PV
PWRSUP
REG

Components in PTLIB3.

Used for:

Actuater
Airregulator
And gate
Normaly closed c
Check valve
Column
Condenser

Tank
Checkvalve
Time delay
Divider
Divider valve
Drain
Revers riser
Evaporator

Evaporator

Flip flop

Furnace

Heater
Heat exchanger

Inverter
Knockout drum

Level sensor
Liquid furner

Load

Mixer
Mixer valve
Not gate
Nozzle

ontact

Normaly open contact
Over flow tank
Or gate
Pipe
Pressure sensor
Pressure "<*nsor

Pump
Push contact
Pressure vessel
Power supply
Regulator

high
low

Ports:

pos, in
in, out, air, set
in1, in2, out
in, out, x
in, out
c, p, f, ref, in, out
drn, in1, in2,

outl, out2
lev, of, in, out
in, out
in, out
in, outl, cut2
pos, in, outl, out2
in
in, out
py, ty, lev, heat,

in, out
py, ty, lev, heat,
drn, in, out

s, r, q, nq
pos, in
air, monito, pilot,
in1 , in2, outl , out2

heat, in, out
in1, in2, outl, out2
pos
in, out
press, sv, lev, drn,

in, out
lev, out
in1, in2, in3, in4, in5,
in6, in7, in8, in, out

in, out

in1, in2, out
pos, in1, in2, out
i n, out
in, out
p, in
in, out, x
lev, dr, of, in, out
in1 , in2, out
c, p, f, t, in, out
in, out
in, out
in, out
pwr, in, out
pos, in, out
p, sv, in, out
out
in, out

REGVLV
RISER
SBYPMP
SEPARA

SH
SIGDIV
SL
SPIIT
STRAP
SUP
SUPTNK
SV
TANK
TFTANK
TRANSA
TURBIN
VALVE
XLI

Regulation valve
Riser
Standby pump
Separator

Sensor high
Signal divider
Sensor low
Splits flow into

Supply-
Supply tank
Safety valve
Tank
Transfer tank
Transformer
Turbine
Valve

Page 87

pos, in, out
in, out
pwr, in, out
press, sv, lev,
drn, in, out

in, out
in, outl, out2
in, out
in, outl, out2
in, out, drn
out
lev, of, dr, in, out
in, out
lev, in, out
lev, dr, of, in, out
in, out
pwr, in, out
pos, in, out
in, out

GRAPHIC FORMS IN LIBRARY: FTL IB3

POS

ACTUAT

^ /rui_REF

COLUMN SiT

CVALVE

^

AIRRE8

™
I*l£

I * '

CONDEN

-QUT2

^T»r

ULpK—DUT

DELAY

U l l

l i e

AND

UU
JU IT2

NBRN

CONDEN

IH{> . >-I)UTl

DU72

DIV

CCONT

DUT2

TTT-OUTI

IN2

CONDEN

r
0UT2

DIV

l i l J ^ OUT

CHECKV

-LEV

CTANK

T2

I N

DIVVLV

Pigure 7.1 Graphic components in FTLIB? continued.

c
<0

1
P
"O
3-
•-••

O
o
o
a
O
3
CD
3
c+-
»

Ir1
i—i

W

o
o
3

3
C

GRAPHIC FORMS IN LIBRARY; FTLIB3

j.t\

KOORUM

°-&

MANUAL

\ /
U l OUT

/ s

NOZZLE

6
levwt

M»

MIX

NRCAC

-UB—UU U B UU

IN

uøW JMZ 1

*T

r
lN»

MIX

t
OCONT

UU

-OUT

LOAD

* $ ~

HIXVLV

uVCZ"
_0f

-**

^ ^ ^

OTTANK

<c~

* > • * »

NOT

3>
OR

8

to
C

ro

-4

-i

3"

O
O
B
tJ
O
3
<t>
3
et
0>

Hl
f
n
W

o
o
3

3

GRAPHIC FORMS IN LIBRARY: FTLIB3

If //// | AMT

PIPC

if. AjJUT

H
OUT

PUMP PWMW

OUT

i£b
RGSVLV R I X R "** I

Ml UL

PV

MYPHP

^

PWMUP

£> øur

PUMP

$

M«

,«MEM

"1

_LO

SEPARA •H

GRAPHIC FORMS IN LIBRARY: FTL IB3

»leoiv

ouzi- -DUT2

•PLIT STRAF
I DUN

^

SUP

SUP

s
TRANSA

—OUT

XII

V — B U T

y LEV

9UPTNK 8V TANK

01!

TFTANK

- O f

i^h JU »DUT

TURB1N I VALVE XLINK

Page 93

The discretisation levels for disturbances used in the FTLIB3
construction process are based on the following:

Table 7.2 Discrete levels in FTLIB3-

VHI

HI

DISTHI

DISTLO

LO

ZERO

REV

Very high - so high that no compensation
is possible, e.g., VHIP = very high pressure.

So high that the disturbance can only be
compensated by shutdown.

High enough to cause an accident, not so
high that a compensation is impossible.

Defined analogously.

Disturbances resulti lg in valves
indistinguishable from zero.

Reversal of flow.

Corresponding failure modes that can be distinguished in flow
system is:

Table 7-3 Failure modes in FTLIB3.

BLOCKED

BURST

LEAK

SMALL LEAK

PARTIALLY

SMALL BLOCKAGE

LOW RESISTANCE

SLIGHTLY LOW
RESISTANCE

NO RESISTANCE

causing zero flow,

causing zero pressure,

causing low.

causing DISTLO pressure.

Page 94

7-1.1 Example of a component in FTLIB3«

RIKKE - Library: FTLIB3

Generic Component: REGVLV
19-Sep-84 11:07:25

Attribute: VL - Variable List

(IN PV)
(REG PV)
(OUT PV)
WS PV)
(STA PV)
(UN PV)
(I0UT PV)
(P PV)
(POS PV)
(VALVE PV)

Attribute: PL - Port List

(POS (POS))
(OUT (OUT))
(*)
(IN (IN))

Attribute: TP - Transfer Functions (Mini-fault-trees)

((IN -> HSPR)((P0S IS OPEN))(0)((OUT -> HSPR)(0UT -> HSPC)))
((OUT -> HBPR)((P0S IS OPEN))(0)((IN -> HBPR)(IN -> HBPC)))
((IN -> HSPR) TRUE (0)((IIH -> HP)))
((IN -> HSPR)((POS IS OPEN)(OUT IS R))(0)((lOUT -> HP)))
((OUT -> HBPR) TRUE (0)((lOUT -> HP)))
((OUT -> HBPR)((POS IS 0PEN)(IN IS R))(0)((IIN -> HP)))
((IN -> HSPR)((OUT ISNT BLOCKED)(POS ISNT PAILCLOSED))(0)
((P -> HP))

((OUT -> HBPR) TRUE (0)((P -> LP)))
((IN -> COMPLOSUPPR)((PCS IS OPEN))(0)((OUT -> COMPLOSUPPR)
(OUT -> COMPLOSUPPC)))

((OUT -> COMPLOBACKPR)((POS IS OPEN))(0)((IN -> COMPLOBACKPR)
(IN -> COMPLOBACKPC)))

((IN -> COMPLOSUPPR) TRUE (0)((IIN -> COMPLOP)))
((IN -> COMPLOSUPPR)((POS IS OPEN)(OUT IS R))(0)
((IOUT -> COMPLOP)))

((OUT -> COMPLOBACKPR) TRUE (0)((IOUT -> COMPLOP)))
((OUT -> COMPLOBACKPR)((POS IS OPEN)(IN IS R))(0)
((UN -> COMPLOP)))

((OUT -> COMPLOBACKPR) TRUE (0)((IOUT -> COMPHIPLO)))
((IN -> COMPHISUPPR)((POS IS OPEN))(0)((OUT -> COMPHISUPPR)
(OUT -> COMPHISUPPC)))

((OUT -> COMPRTBACKPR)((POS IS OPEN))(0)((IN -> COMPHIBACKPR)
(IN -> COMPHIBACKPC)))

((IN -> COMPHISUPPR) TRUE (0)((IIN -> COMPHIP)))
((IN -> COMPHISUPPR)((POS IS OPEN)(OUT IS R))(0)
((IOUT -> COMPHI?)))

((OUT -> COMPHIBACKPR) TRUE (0)((IOUT -> COMPHIP)))

Page 95

((OUT -> COMPHIBACKPR)((POS IS 0PBN)(IN IS R))(0)
((UN -> COMPHIP)))

((OUT -> COMPHIBACKPR) TRUE (0)((lOUT -> COMPLOPLO)))
('IN -> DISTHISUPPR)((POS ISNT COMPLO))(0)((OUT -> DISTHISUPPR)
(OUT -> DISTHISUPPC)))

((OUT -> DISTHIBACKPR)((POS ISNT COMPHI))(0)((IN -> DISTHIBACKPR)
(IN -> DISTHIBACKPC)))
(IN -> DISTHISUPPR) TRUE (0)((IIN -> DISTHIP)))
(IN -> DISTHISUPPR)((POS ISNT C0MPL0)(0UT IS R)
(OUT ISNT COMPLOBACKPR))(0)((IOUT -> DISTHIP)))
(OUT -> DISTHIBACKPR) TRUE (0)((lOUT -> DISTHIP)))
(OUT -> DISTHIBACKPR)((POS ISNT COMPHl)(IN IS R))(0)
((UN -> DISTHIP)))
(IN -> DISTHISUPPR)((OUT ISNT SHUTOPP)(POS ISNT COMPLO)
(OUT ISNT COMPHIBACKPR))(0)((I0UT -> DISTHIFLO)))
(OUT -> DISTHIBACKPR)((POS ISNT COMPHl)(IN ISNT COMPHISUPPR))(0)
((IOUT -> DISTLOPLO)))
(IN -> DISTLOSUPPR)((POS ISNT COMPHI))(0)((OUT -> DISTLOSUPPR)
(OUT -> DISTLOSUPPC)))
(OUT -> DISTLOBACKPR)((POS ISNT COMPLO))(0)((IN -> DISTLOBACKPR)
(IN -> DISTLOBACKPC)))
(IN -> DISTLOSUPPR) TRUE (0)((IIN -> DISTLOP)))
(IN -> DISTLOSUPPR)((POS ISNT COMPHI)(OUT IS R)
(OUT ISNT COMPHIBACKPR))(0)((IOUT -> DISTLOP))}
(OUT -> DISTLOBACKPR) TRUE (0)((IOUT -> DISTLOP)))
(OUT -> DISTLOBACKPR)((POS ISNT COMPLO)(IN IS R)
(IN ISNT COMPHISUPPR))(0)((UN -> DISTLOP)))
(IN -> DISTLOSUPPR)((OUT ISNT COMPLOBACKPR)(POS ISNT C0MPHI))(0)
((IOUT -> DISTLOPLO)))
(OUT -> DISTLOBACKPR)((POS ISNT DISTLO)(IN ISNT COMPLOSUPPR))(0)
((IOUT -> DISTHIPLO)))
(IN -> LOSUPPR) TRUE (0)((OUT -> LOSUPPR)(OUT -> LOSUPPC)))
(OUT -> LOBACKPR)((POS IS OPEN))(0)((IN -> LOBACKPR)
(IN -> LOBACKPC)))
(IN -> LOSUPPR) TRUE (0)((IIN -> LOP)))
IN -> LOSUPPR)((OUT IS R))(0)((I0UT -> LOP)))
(OUT -> LOBACKPR) TRUE (0)((IOUT -> LOP)))
(OUT -> LOBACKPR)((POS IS 0PEN)(IN IS R))(0)((IIN -> LOP)))
IN -> LOSUPPR) TRUE (0)((IOUT -> LOPLO)))
(OUT -> LOBACKPR)((IN ISNT SHUTOPP)(POS ISNT CLOSED))(0)
((IOUT -> HIPLO)))
(IN -> HISUPPR)((POS IS OPEN))(0)((OUT -> HISUPPR)
(OUT -> HISUPPC)))
(OUT -> HIBACKPR)((POS IS OPEN))(0)((IN -> HIBACKPR)
(IN -> HIBACKPC)))
(WS -> R) TRUE (0)((IN -> R)(OUT -> R)))
(WS -> BURST) TRUE (0)((IN -> C)(OUT -> C)))
(IN -> HISUPPR) TRUE (0)((IIH -> HIP)))
((IN -> HISUPPR)((POS IS OPEN)(OUT IS R))(0)((IOUT -> HIP)))
((OUT -> HIBACKPR) TRUE (0)((I0UT -> HIP)))
OUT -> HIBACKPR)((POS IS 0PEN)(IN IS R))(0)((IIN -> HIP)))
(IN -> HISUPPR)((OUT ISNT SHUTOPP)(POS IS 0PEN))(O)
((IOUT -> HIPLO)))

((OUT -> HIBACKPR) TRUE (0)((IOUT -> LOPLO)))
((IN -> NOSUPP) TRUE (0)((IIN -> X)))
((UN -> X)((OUT IS N0BACKPR))(0)((I0UT -> NOP)))
((OUT -> NOBACKP) TRUE (0)((IOUT -> X)))
((WS -> BLOCKED) TRUE (0)((IIN -> X)(IOUT -> X)))
((IN -> N0SUPP)((I0UT IS X))(0)((IIN -> NOP)))
(IN -> ATM) TRUE (0)((IIN -> NOP)))
((OUT -> ATM) TRUE (0)((IOUT -> NOP)))
((WS -> BLOCKED) TRUE (0)((IN -> NOBACKP)(IN -> NOBACKPR)

\

Page

(OUT -> NOSUPP)(OUT -> NOSUPPR)))
((POS -> PAILCLOSED) TRUE (0)((IN -> NOBACKP)(IN -> NOBACKPR)
(OUT -> NOSUPP)(OUT -> NOSUPPR)))

((WS -> BLOCKED) TRUE (0)((IIN -> NOPLO)(IOUT -> NOPLO)))
((POS -> PAILCLOSED) TRUE (0)((IIN -> NOPLOMlOUT -> NOPLO)))
((IN -> NOSUPPLO)((OUT IS NOBACKFLO))(O)((IIN -> NOPLO)
(IOUT -> NOPLO)))

((IN -> NOSUPP)((OUT IS BACKPLOHPOS IS OPEN))(0)((UN -> REVPLO)
(IOUT -> REVPLO)))

((OUT -> BACKPLO)((POS IS OPEN))(0)((IN -> BACKPLO)))
((WS -> BURST) TRUE (0)((IN -> NOBACKPR) (IN -> ATM) (UN -> NOP)
(IOUT -> NOP)(OUT -> ATM)(OUT -> NOSUPPR)))

((IN -> NOSUPPR) TRUE (0)((OUT -> NOSUPP)(OUT -> NOSUPPR)))
((OUT -> NOBACKPR) TRUE (0)((IN -> NOBACKPR}(IN -> NOBACKP)))
((WS -> BLOCKED) TRUE (0)((lN -> BLOCKED)(OUT -> BLOCKED)))
((IN -> BLOCKED) TRUE (0)((OUT -> BLOCKED)))
((OUT -> BLOCKED) TRUE (0)((IN -> BLOCKED)))
((OUT -> BACKPLO)((P0S IS OPEN))(0)((IN -> BACKPLO)))
((IN -> SUP)((POS IS OPEN))(0)((OUT -> SUP)))
((POS -> PAILCLOSED) TRUE (0)((IN -> NOTATM)(OUT -> NOTATM)))
((IN -> NOTATM) TRUE (0)((OUT -> NOTATM)))
((OUT -> NOTATM) TRUE (0)((IN -> NOTATM)))
((OUT -> NOBACKPLO) TRUE (0)((IN -> NOBACKPLO)))
((IN -> NOSUPPLO) TRUE (0)((OUT -> NOSUPPLO)))
((WS -> BURST) TRUE (0)((OUT -> NOSUPPLO)(IN -> NOBACKPLO)))
((IN -> NOSUPPLOTR) TRUE (0)((OUT -> NOSUPPLOT)
(OUT -> NOSUPPLOTR)))

((OUT -> NOBACKPLOTR) TRUE (0)((IN -> NOBACKPLOT)
(IN -> NOBACKPLOTR)))

((WS -> BURST) TRUE (0)((IN -> NOBACKPLOTR)(OUT -> NOSUPPLOTR)))
((POS -> PAILCLOSED) TRUE (0)((IN -> BLOCKED)(OUT -> BLOCKED)))
((IN -> ON)((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE IS NOTBURST))(0)((OUT -> ON)))

((IN -> OPP) TRUE (0)((OUT -> OPP)))
((IN -> LIQUID)((POS IS OPEN))(0)((OUT -> LIQUID)))
((IN -> GAS)((POS IS OPEN))(0)((OUT -> GAS)))
((IN -> CONTAMINATED)((POS IS OPEN))(0)((OUT -> CONTAMINATED)))
((IN -> SCUM)((POS IS OPEN))(0)((OUT -> SCUM)))
((IN -> HIT)((POS IS OPEN))(0)((OUT -> HIT)))
((IN -> DISTHIT)((POS IS OPEN))(0)((OUT -> DISTHIT)))
((IN -> DISTLOT)((POS IS OPEN))(0)((OUT -> DISTLOT)))
((IN -> LOT)((POS IS OPEN))(0)((OUT -> LOT)))
((IN -> COMPHIT)((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE IS NOTBURST))(0)((OUT -> COMPHIT)))

((IN -> COMPLOT)((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE IS NOTBURST))(0)((OUT -> COMPLOT)))

((IN -> HIC0NC)((POS IS 0PEN))(O)((0UT -> HICONC)))
((IN -> DISTHICONC)((POS IS OPEN))(0)((OUT -> DISTHICONC)))
((IN -> DISTLOCONC)((POS IS OPEN))(0)((OUT -> DISTLOCONC)))
((IN -> LOC0NC)((POS IS OPEN))(0) (OUT -> LOCONC)))
((IN -> COMPHICONC)((POS IS OPEN)(VALVE IS NOTBURST)
(VALVE IS NOTBLOCKED))(0)((OUT -/ COMPHICONC)))

((IN -> COMPLOCONC)((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE IS NOTBURST))(0)((OUT -> COMPLOCONC)))

((IN -> SUBST1PRESENT)((POS IS OPEN))(0)((OUT -> SUBST1PRESENT)))
((IN -> SUBST1HI)((P0S IS OPEN))(0)((OUT -> SUBST1HI)))
((IN -> SUBST1L0)((P0S IS OPEN))(0)((OUT -> SUBST1L0)))
((IN -> SUBST2HI)((POS IS OPEN))(0)((OUT -> SUBST2HI)))
((IN -> SUBST2PRESENT)((P0S IS OPEN))(0)((OUT -> SUBST2PRESENT)))
((IN -> SUBST2L0)((P0S IS OPEN))(0)((OUT -> SUBST2L0)))
((IOUT -> REVPL0)((0UT IS HOT))(0)((IIN -> HIT)(IN -> HOT)))
((IOUT -> REVPLO)((OUT IS COLD)) (0) ((UN -> LOT)(IN -> COLD)))

Page 97

(I0UT -> REVFLO)((OUT IS SUBST1PRESENT))(0)((IN -> SUBST1PRESENT)
(UN -> SUBST1 PRESENT)))
(IOUT -> REVFLO)((OUT IS SUBST2PRESENT))(0)((IN -> SUBST2PRESENT)
(UN -> SUBST2PRESENT)))
(IOUT -> REVFL0)((0UT IS LIQUID))(0)((IN -> LIQUID)
(UN -> LIQUID)))
(IOUT -> REVFL0)((0UT IS GAS))(0)((IN -> GAS)(IIN -> GAS)))
(ICUT -> REVPL0)((0UT IS DIRTY))(0)((IN -> DIRTY)(IIN -> DIRTY)))
(IOUT -> REVPL0)((0UT IS GRITTY))(0)((IN -> GRITTY)
(UN -> GRITTY)))
(IOUT -> REVFL0)((0UT IS CONTAMINATED))(0)((IN -> CONTAMINATED)
(UN -> CONTAMINATED)))
(POS -> FAILHI)((IN ISNT SHUTOPP))(0)((0UT -> HISUPPC)
(OUT -> HISUPPR)(0UT -> HISUPP)(IN -> L0BACKPC)(IN -> LOBACKPR)
(IN -> LOBACKP)))
(POS -> FAILHI)((OUT IS R)(IN ISNT SHUTOPP))(0)((IOUT -> HIP)))
(POS -> PAILHI)((IN ISNT SHUTOPP)(OUT ISNT SHUTOPP))(0)
((UN -> HIFLOKIOUT -> HIPLO)))
(POS -> FAILHI)((IN IS R)(OUT ISNT SHUTOPP)) (0) ((UN -> LOP)))
(POS -> PAILLO) TRUE (0)((OUT -> LOSUPPC)(OUT -> LOSUPPR)
(OUT -> LOSUPP)(IN -> HIBACKPC)(IN -> HIBACKPR)(IN -> HIBACKP)))
(POS -> PAILLO)((OUT IS R)(OUT ISNT SHUTOPP))(0)((IOUT -> LOP)))
(POS -> PAILLO) TRUE (0)((IIN -> LOPLO)(IIN -> LOPLO)))
POS -> PAILLO)((IN IS R)(IN ISNT SHUTOPP))(0) ((UN -> HIP)))
POS -> DRIFTHIK (IN ISNT COMPLOSUPPR))(0)((OUT -> DISTHISUPPC)
(OUT -> DISTHISUPPR)(OUT -> DISTHISUPP)))
(POS -> DRIPTHI)((OUT ISNT COMPHIBACKPR))(0)((IN -> DISTLOBACKPC)
(IN -> DISTL0BACKPR)(IN -> DISTLOBACKP)))
(POS -> DRIFTHI)((IN ISNT COMPLOSUPPR)(IN ISNT SHUTOPP)
(OUT IS R))(0)((IOUT -> DISTHIP)))
(POS -> DRIFTHI)((IN ISNT COMPLOSUPPR)(OUT ISNT COMPHIBACKPR))(0)
((UN -> DISTHIFLOMIOUT -> DISTHIPLO)))
(POS -> DRIPTHI)((IN IS R)(IN ISNT COMPHISUPPR)
(OUT ISNT COMPHIBACKPR))(0)((IIN -> DISTLOP)))
(POS -> DRIPTL0)((IN ISNT COMPHISUPPR))(0)((OUT -> DISTLOSUPPC)
(OUT -> DISTLOSUPPR)(OUT -> DISTLOSUPP)))
(JOS -> DRIFTLOK(OUT ISNT COMPLOBACKPR))(0)((IN -> DISTHIBACKPC)
(IN -> DISTHIBACKPR)(IN -> DISTHIBACKP)))
(POS -> DRIFTLOK(IN ISNT COMPHISUPPR)(IN ISNT SHUTOPP)
(OUT IS R))(0)((I0UT -> DISTLOP)))
(POS -> DRIFTLOK(IN ISNT COMPHISUPPR)(OUT ISNT COMPLOBACKPR))(0)
((UN -> DISTLOFLOKIOUT -> DISTLOPLO)))
(POS -> DRIFTL0)((IN IS R)(IN ISNT COMPLOSUPPR)
(OUT ISNT COMPLOBACKPR))(0)((UN -> DISTHIP)))
(POS -> COMPHI) TRUE (0)((OUT -> COMPHISUPPC)(OUT -> COMPHISUPPR)
(OUT -> COMPHISUPPKIN -> COMPLOBACKPC) (IN -> COMPLOBACKPR)
(IN -> COMPLOBACKP)))
(POS -> COMPLO) TRUE (0)((OUT -> COMPLOSUPPC)(OUT -> COMPLOSUPPR)
(OUT -> COMPLOSUPPKIN -> COMPHIBACKPC) (IN -> COMPHIBACKPR)
(IN -> COMPHIBACKP)))
(POS -> DRIFTHI) TRUE (0)((OUT -> DRIPTHISUPPC)
(OUT -> DRIPTHISUPPR)(OUT -> DRIPTHISUPP)(IN -> DRIPTLOBACKPC)
(IN -> DRIFTLOBACKPRKIN -> DRIPTLOBACKP)))
(POS -> DRIPTLO) TRUE (0)((OUT -> DRIPTLOSUPPC)
(OUT -> DRIFTLOSUPPRKOUT -> DRIPTL0SUPP)(IN -> DRIPTHIBACKPC)
(IN -> DRIFTHIBACKPRKIN -> DRIPTHIBACKP)))
POS -> CLOSED) TRUE (0)((IN -> SHUTOFF)(OUT -> SHUTOFF)))
IN -> SHUTOFF) TRUE (0)((OUT -> SHUTOFF)))
(OUT -> SHUTOFF) TRUE (0)((IN -> SHUTOFF)))
(POS -> FAILCLOSED) TRUE (0)((IIN -> X)))
(OUT -> BLOCKED) TRUE (0)((IOUT -> rTP)))
(IN -> BLOCKED)((OUT IS SUP))(0)((IOUT -> LOP)))

((IN -> BLOCKED) TRUE (0) ((I I H -> HOPLO)(IOUT -> NOPLO)))
((OUT -> BLOCKED) TRUE (0) ((I I H -> NOPLO)(IOUT -> NOPLO)))
((WS -> BURST) TRUE (0)((OUT -> NOSUPP)(OUT -> NOSUPPR)

(OUT -> NOSUPPCHlN -> NOBACKPKlN -> NOBACKPR)
(IN -> NOBACKPC)))

((WS -> BURST) TRUE (0) ((I N -> LOBACKPR)))
((IN -> GAS)((POS IS OPEN))(0)((OUT -> HISUPPR)))
((IN -> GAS)((POS IS OPEN))(0)((OUT -> HISUPPC)))

At tr ibute : NS - Normal S t a t e s

((POS IS OPEN)((POS -> CLOSED)))
((POS ISNT C0MPHI)((P0S -> COMPHI)))
((POS ISNT COMPLO)((POS -> COMPLO)))
((OUT ISNT SHUTOFF)((OUT -> SHUTOPP)))
((IN ISNT SHUTOPP)((IN -> SHUTOPP)))
((IN ISNT COMPHISUPPR)((IN -> COHPHISUPPR)))
((IN ISNT COMPLOSUPPR)((IN -> COHPLOSUPPR)))
((OUT ISNT COMPHIBACKPR)((0UT -> COMPHIBACKPR)))
((OUT ISNT COMPLOBACKPR)((OUT -> COMPLOBACKPR)))
((WS IS R))

Attribute: SB - Spontaneous Events

(WS -> BLOCKED)
(WS -> BURST)

Attribute: WS - Working State3

POS IS OPEN)((POS IS CLOSED)))
VALVE IS NOTBLOCKEDM(VALVE IS BLOCKED)))

((VALVE IS NOTBURSTM (VALVE IS BURST)))
((VALVE ISNT BLOCKED)((VALVE IS BLOCKED)))

Attribute: LP - Latent Failures

(VALVE IS BLOCKED)
(VALVE IS BURST)

Page 99

7.2 HAZLB2

The library HAZLB2 has 26 components. The names and uses are shovn
in table 7.4.

Table 7.4 Components in HAZLB2.

Component: Used for: Ports:

AIRREG
BPTANK

CCN
CV
CVALVE
DIV
EVAP

HEX
INVERT
LGTANK

LOAD
MIX
OCN
PIPE
PORT
PUMP
RVALVE
SEP

SH
SIGDIV
SIGMIX
SL
SV
TPTANK
TRANSA
VALVE

Air regulator
Buffer tank

Normaly closed contact
Check valve
Check valve
Divider
Evaporator

Heat exchanger
Inverter
Liquid/gas tank

Load
Mixer
Normaly open contact
Pipe
External connection
Pump
Regulation valve
Separator

Sensor high
Signal divider
Signal divider
Sensor low
Safety valve
Transfer tank
Transformer
Valve

set, air, in, out
lev, drn, sv, of, t,
p, in, out

act, in, out
in, out
in, out, pos
in, outl, out2
in, out, dm, heat,
sv, lev, p, t

hin, hout, in, out
in, out
sv, p, lev, drn,

in, out
in, out
in1, in2, out
in, out, act
v, c, p, f, t, in, out
port
pwr, in, out
pos, in, out
p, sv, lev, drn,

in, out
in, out
in, outl, out2
inl, in2, out
in, out
in, out
drn, of, in, out
in, out
pos, in, out

*d
OQ
SS

CD

<P
-1
J»

•tf
3*
»- • -
O

o
o
a
*n
o
3
CD
3
c+
CO

>

fcr1

W
ru

GRAPHIC FORMS IN LIBRARY: HAZLB2

OH SET

AIRREG

U f . O-DUT I

0UT2

OIV

LOAD

:v

BFTANK

JN SV OUT

il!AX_

SV OU

i-EV

"TSRN

EVAP

1&- ->-X>tJT

i H2

MIX

JN

*CT

DUT

CCN

rtOUT

"TUN

HEX

kCT

DUT

OCN

EE? UT

CV

IT

DUT

INVERT

lil y P r P 7 UJU

PIPE

pos
_OUT

CVALVE

JLU- 0" I~ |Vp

PRN
LGTANK I

.EV

PORT

PORT I

9)

CD

ro

•t
9

3*

o
o
o
a
«
o
3
CD
3
<H-
CQ

as
>
tr«
tx)
IV)

o
o
3
c*
M-

3

Cb

GRAPHIC FORMS IN LIBRARY: HAZLB2

PORT

PORT

lUT!

SIGOIV

é
TRANSA

PUMP

1*1- ->-OUT

4, N2

SIGMIX

POS

UlNIc^-OUT

VALVE

< ^ >

XJT

RVALVE

SL

• POUT KV UL.

ZDBU Lo

6
SEP SH

01'

lUT

SV TFTAKX

J U T

>RN I

Page 102

In HAZLB2 a special failure generating component (PORT)
available.

is

This is a contracted component used for generating possible
external disturbances that could be let into the system represented
by a draft.

If a system includes open ports, as supply, drain and power ports,
this component would assure the generation of possible disturbances
from the open port while closing it by connection.

Compared to the FTLIB3 this component is a replacement of the
drain, supply, power, etc. components, and should be used as such.

The discretisation levels for disturbances used in HAZLB2 are based
on the following:

Table 7-5 Discrete levels in HAZLB2.

HI

DISTHI

HI SUP

HIBACK

COMPHI

DISTLO
LO

LOSUP
LOBACK
COMPLO

ZERO

REV

So high that the disturbance can only be
compensated by shutdown.

High enough to cause an accident, not so
high that a compensation is impossible.

High disturbances in the supply pipe.

High disturbances reverse from the
outlet.

Compensation of disturbances.(Regulation)

Defined analogously.

Disturbances resulting in valves
indistinguishable from zero.

Reversal of flow.

Corresponding failure modes that can be distinguished in flow
system is:

Page 103

Table 7.6 Failure modes in HAZLB2.

BLOCKED causing zero flow.

BURST causing zero pressure.

LEAK causing low.

SUPPLIED

DRAINED

RELIEVED

SHUTOFF

CONTAMINATED

ON

OFF

FAILON

FAILOFF

In the following an example of the component RVALVE is shown.

7.2.1 Example of a component in HAZLB2.

RIKKE - Library: HAZLB2

Generic Component: RVALVE
1-Mar-84 13:04:46

Attribute: VL - Variable List

(IN PV)
(VALVE PV)
(OUT PV)
(WS PV)
(POS PV)
(DE PV)
(R PV)
(0 PV)

Attribute: PL - Port List

(IN (IN))
(OUT (OUT))
(POS (POS))

Attribute: TP - Transfer Functions (Mini-fault-trees)

((IN -> HISUPP) TRUE (1)((IN -> AHIP)))
((IN -> AHIP)((IN ISNT SHUTOPP)(IN ISNT COMPLOP)

(OUT ISNT COMPLOBACKP))(0)((IN -> HIP)))
((IN -> AHIP)((IN ISNT SHUTOPP)(IN ISNT COMPLOP)(OUT ISNT

COMPLOBACKP)
(VALVE IS OPEN))(0)((OUT -> HIP)))
((IN -> AHIP)((IN ISNT SHUTOPP)(OUT ISNT SHUTOPP)(IN ISNT

COMPLOP)
(OUT ISNT COMPHIBACKP)(OUT ISNT SHUTOFP)(VALVE IS OPEN))(0)
((IN -> HIPLO)(OUT -> HIPLO)))

((OUT -> HIBACKP) TRUE (1)((0UT -> AHIP)))
((OUT -> AHIP)((OUT ISNT SHUTOPP)(OUT ISNT COMPLOBACKP)
(VALVE IS OPEN)(IN ISNT SHUTOPP)(IN ISNT COMPLOP))(0)((IN ->

HIP)))
((OUT -> AHIP)((OUT ISNT COMPLOBACKP)(IN ISNT C0MPHIP))(O)
((OUT -> LOFLOKIN -> LOPLO)))

((OUT -> AHIP)((IN ISNT SHUT0PP)(IN ISNT COMPLOP)
(OUT ISNT SHUTOPP)(VALVE IS 0PEN)(OUT ISNT COMPLOBACKP))(0)
((OUT -> HIP)))

((OUT -> AHIP)((OUT IS SUPPLIEDHOUT ISNT SHUTOPP)
(IN ISNT SHUTOPP)(VALVE IS OPEN))(0)((OUT -> REVPLO)(IN ->

REVPLO)))
((IN -> LOSUPP) TRUE (1)((IN -> ALOP)))
((OUT -> LOBACKP) TRUE (1)((0UT -> ALOP)))
((IN -> ALOP)((IN ISNT COMPHIP)(OUT ISNT COMPHIBACKP)
(OUT ISNT SHUTOPP)(VALVE ISNT CLOSED))(0)((IN -> HIP)
(OUT -> HIP)))

((IN -> ALOP)((IN ISNT COMPHIP)(OUT ISNT COMPLOBACKP))(0)
((IN -> LOPLO)(OUT -> LOPLO)))

((OUT -> ALOP)((OUT ISNT COMPHIBACKP)(OUT ISNT SHUTOPP))(0)
((OUT -> LOP)))

((OUT -> ALOP)((OUT ISNT COMPHIBACKP)(IN ISNT COMPLOSUPP)
(IN ISNT SHUTOPP)(OUT ISNT SHUTOPP)(VALVE IS OPEN))(0)

Page 105

((IN -> HIFL0)(0UT -> HIPLO)))
(OUT -> ALOP)((OUT ISNT COMPHIBACKP)(OUT ISNT SHUTOPP)
(VALVE IS OPEN)(IN ISNT COMPHIP))(0)((IN -> LOP)))
(OUT -> AHIP)((VALVE IS OPEN)(OUT IS SUPPLIED)(IN ISNT SHUTOPP)
(OUT ISNT SHUTOPP))(0)((IN -> REVPLO)(OUT -> REVFLO)))
(IN -> PDHIFLO)((VALVE IS OPEN))(0)((OUT -> PDHIFLO)))
(IN -> PDHIPLO)((VALVE IS CLOSED))(0)((IN -> AHIP)(WS -> BURST)))
(VALVE -> PAILCLOSED) TRUE (0)((VALVE -> CLOSED)))
(POS -> CLOSED)((VALVE ISNT STUCK))(0)((VALVE -> CLOSED)))
(VALVE -> CLOSED) TRUE (0)((IN -> BLOCKED)(OUT -> BLOCKED)))
(POS -> CLOSED)((VALVE ISNT STUCK))(0)((IN -> SHUTOPP)
(OUT -> SHUTOPP)))
(POS -> OPEN)((VALVE ISNT STUCK))(0)((VALVE -> OPEN)))
(VALVE -> PAIL0PEN)((IN IS SUPPLIED))(0)((OUT -> HISUPP)
(OUT -> AHIP)))
(IN -> SUPPLIED)((VALVE IS OPEN))(0)((OUT ->
(OUT -> SUPPLIED)((VALVE IS OPEN))(0)((IN ->
(IN -> BLOCKED) TRUE (0)((OUT -> BLOCKED)))
(OUT -> BLOCKED) TRUE (0)((IN -> BLOCKED)))
(IN -> SHUTOPP) TRUE (0)((OUT -> SHUTOPP)))
(OUT -> SHUTOPP) TRUE (0)((lN -> SHUTOPP)))
(IN -> NOSUPP)((OUT ISNT SUPPLIED))(0)((IN ->
(IN -> BLOCKED)((OUT IS SUPPLIED))(0)((OUT ->
(IN -> BLOCKED) TRUE (0)((IN -> NOFLO)(OUT ->

SUPPLIED)))
SUPPLIED)))

NOP)(OUT -> NOP)))
LOP)(IN -> LOP)))
NOPLO)))

(OUT -> BLOCKED) TRUE (6)((IN -> NOPLO)(OUT -> NOPLO)))
NOPLO)))

-> BLOCKED)

(VALVE -> CLOSED) TRUE (0)((IN -> NOPLO)(OUT ->
(VALVE -> CLOSED) TRUE (0)((lN -> HIBACKP)))
(VALVE -> BLOCKED) TRUE (0)((IN -> BLOCKED)(OUT
(IN -> HIBACKP)))
(VALVE -> BLOCKED) TRUE (0)((OUT -> NOSUPP)))
(VALVE -> CLOSED) TRUE (0)((OUT -> NOSUPP)))
(IN -> NOSUPP) TRUE (0)((OUT -> NOSUPP)))
(IN -> ATM)((VALVE IS OPEN))(0)((OUT -> ATM)))
(OUT -> ATM)((VALVE IS OPEN))(0)((IN -> ATM)))
(VALVE -> BURST) TRUE (0)((IN -> ATM)(OUT -> ATM)))
(IN -> ATM) TRUE (1)((IN -> ANOP)))
(OUT -> ATM) TRUE (1)((0UT -> ANOP)))
(IN -> ANOP)((VALVE IS OPEN))(0)((IN -> NOP)))
(IN -> ANOP) TRUE (0)((OUT -> NOP)))
(OUT -> ANOP)((OUT ISNT SHUTOPP))(0)((OUT -> NOP)))
(OUT -> ANOP)((VALVE IS OPEN)(OUT ISNT SHUTOPP))(0)((IN -> NOP)))
IN
(IN
(IN
IN
(IN
(IN
IN
(IN
(IN
(IN
(IN
(IN
(IN

->
->
->
->
->
->
->
->
->
->
->
->
->

OPEN))(0)((OUT ->
OPEN))(0)((OUT ->
IS OPEN))(0)((OUT
IS OPEN)) 0)((OUT
IS OPEN))(0)((OUT
OPEN))(0)((OUT ->

CONTAMINATED)((VALVE IS OPEN))(0)((OUT -> CONTAMINATED)))
COMPHIP)((VALVE IS OPEN))(0)((OUT -> COMPHIP)))

OPEN))(0)((OUT ->
OPEN))(0)((OUT ->
OPEN))(0)((OUT ->
IS OPEN))(0)((OUT

COMPLOCONCM (VALVE IS OPEN)) (0) ((OUT
(OUT -> COMPHIBACKPM (VALVE IS OPEN))(0)((IN ->
(OUT -> COMPLOBACKPM (VALVE IS OPBN))(0)((IN ->
(IN -> HIVAC)((VALVE IS OPEN))(0)((OUT -> HIVAC
(IN -> LOVAC)((VALVE IS OPEN))(0)((OUT -> LOVAC
OUT -> HIVAC) (VALVE IS OPEN))(0)((IN -> HIVAC
OUT -> LCVAC) (VALVE IS OPEN))(0)((IN -> LOVAC
(IN -> HIVAC)((VALVE IS OPEN)(OUT ISNT SHUTOPP)
((IN -> REVPLO)(OUT -> REVPLO)))

HIT)((VALVE IS
LOT)((VALVE IS
HICONCH (VALVE
LOCONC) VALVE
LIQUID)((VALVE
GAS)((VALVE IS

COMPLOP)((VALVE IS
COMPHIT)((VALVE IS
COMPLOTM (VALVE IS
COMPHICONC)((VALVE

HIT)))
LOT)))
-> HICONC)))
-> LOCONC)))
-> LIQUID)))
GAS)))

COMPLOP)))
COMPHIT)))
COMPLOT)))
-> COMPHICONC)))
-> COMPLOCONC)))

COMPHIBACKP)))
COMPLOBACKP)))

Page 106

((OUT -> HIVACM (VALVE IS OPEN) (IN ISNT SHUTOPP))(0)
((IN -> HIFL0)(IN -> LOPLO)))

((IN -> HISUPPM(VALVE IS OPEN)(POS ISNT COMPLO))(0)
((OUT -> HISUPP)))

((OUT -> HIBACKP)((VALVE IS OPEN)(VALVE ISNT COMPLO))(0)
((IN -> HIBACKP)))

((IN -> LOSUPP)((VALVE ISNT COMPHI))(0)((OUT -> LOSUPP)))
((OUT -> LOBACKPM(VALVE IS OPEN)(VALVE ISNT COMPLO))(0)
((IN -> LOBACKP)))

((POS -> COMPHI)((VALVE ISNT STUCK))(0)((VALVE -> COMPHI)))
((POS -> COMPLO)((VALVE ISNT STUCK))(0)((VALVE -> COMPLO)))
(IN -> DRAINED)((VALVE IS OPEN))(0)((OUT -> DRAINED)))
(OUT -> DRAINED)((VALVE IS OPEN))(0)((IN -> DRAINED)))
((IN -> RELIEVED)((VALVE IS OPEN))(0)((OUT ~> RELIEVED)))
((OUT -> RELIEVED)((VALVE IS OPEN))(0)((IN -> RELIEVED)))

Attribute: NS - Normal States

((VALVE IS OPEN)((VALVE -> CLOSED)))
((OUT ISNT SHUTOPP)((OUT -> SHUTOPP)))
((IN ISNT SHUTOPP)((IN -> SHUTOPP)))
((IN ISNT C0MPL0P)((IN -> COMPLOP)))
((IN ISNT COMPHIP)((lN -> COMPHIP)))
(OUT ISNT COMPL0BACKP)((OUT -> COMPLOBACKP)))
(OUT ISNT COMPHIBACKP)((OUT -> COMPHIBACKP)))
((VALVE ISNT STUCK)((VALVE -> STUCK)))
((VALVE ISNT COMPLO)((VALVE -> COMPLO)))
((VALVE ISNT COMPHI)((VALVE -> COMPHI)))

Attribute: SE - Spontaneous Events

(VALVE -> BURST)
VALVE -> BLOCKED)
VALVE -> PAILCLOSED)
(VALVE -> PAILOPEN)

Attribute: WS - Working States

((VALVE ISNT STUCK)((VALVE IS STUCK)))
((VALVE IS OPEN)((VALVE IS CLOSED)(VALVE IS BLOCKED)
(VALVE IS BURST)))

Attribute: LP - Latent Failures

(VALVE IS STUCK)
(VALVE IS BLOCKED)
(VALVE IS BURST)
(VALVE IS PAILCLOSED)

Page 107

8. PILOSOPHY OP GENERIC MODELLING

The automatic fault tree generation almost has reached a point
where it can be used routinely. A well recognised problem,
though, is that of creating the component models to be used.
This is the work of the domain expert.

The considerations are how the component modelling process
should be, and what sizes of fault trees results from
different kind of models. This is an important question
because the trees grow very rapidly, if you insist on making
them at the same time very thorough.

For the modelling work described here, three criteria were
established:

(1) The models should be universal, in the sense that, given
a model library, the only work required in constructing a
new tree should De to draw a flow sheet, piping diagram,
or wiring diagram and input of the relevant top event.

(2) The event sequences placed in the tree should be a proper
physical description of the dynamic behavior of the
plant.

(3) The models should have a well defined scope and within
the scope of the disturbance types and failure modes
treated, the fault trees should be complete.

These are quite ambigious goals, when applied to process
plants or electrical systems*. They are considered important,
when using fault tree analysis as a design aid however; the
first because otherwise the time taken for automatic analysis
is longer than for manual; the second and third because
mistakes are otherwise easily made and reduce all confidence
in results.

Shafaghi (1982) distinguishes between pure logic or predictive
models, which aim at producing fault tree results directly via
a pattern matching process, and descriptive models, which
explain the physical processes occuring. The problem with
pure logic models is that all possible patterns must be
predicted beforehand, and there is often controversy
concerning the correct form of the results (Henley and
Kumamoto, 1977 ;Locks, 1979). Descriptive models can be used
to analyse component configurations, which have never yet been
seen, since the physical processes involved are constant.

Most published models fall between the extremes of pure logic
models and descriptive models. The models described here are
entirely descriptive.

In (Taylor, 1973) a model construction method was described
which fulfills the three criterions mentioned earlier and the
following two requirements;

Page 108

(1) It is necessary to distinguish between disturbances of
flow (current), disturbances of pressure (voltage), and
disturbances of variables such as tenperature,
concentration, phase etc., since these have different
causal structures.

(2) It is necessary bo take account of disturbances which
spread upstream as well as downstream in an energy flow
system.

Briefly, the model construction is as follows:

(1) A range of components is chosen, and variables to
describe their states.

(2) A set of discrete variable values is chosen.

Then for each component:

(3) A set of functional and failure modes is described.

(4) Equations are written to describe functioning and
failure.

(5) An equation bigraph is drawn in which squares represent
equations, circles represent variables.

(6) All possible causal relationships are drawn on the
bigraphs.

(7) Signal flow graph fragments are extracted from the
graphs.

(8) For each signal flow graph fragment, an input (x) state
-> output table is drawn.

(9) Mini fault trees are written for each entry in the table.

Page 109

8.1 Model simplification.

In most risk analysis of process plants and electric circuits
the fault trees generated are rather big with many branches
and loops. To handle the fault trees simplifications are
necessary.

(1) A fault tree should be generated, so that propagation of
disturbances is completely described, while duplications
are eliminated.This pattern constitutes the first
simplification of the models.

(2) When plotting the propagation of a distubance such as
HIGHPRESSURE, its effect at the output of a component
will depend on the back pressure or downstream
resistance. At each step along a chain of components,
the question must be asked "what is the resistance
downstream". This leads to a fault tree structure, which
corresponds to an approximate solution of flow equations
at each component. Fortunately, such a work is not
necessary. If instead of searching for disturbances, a
search is made for potential causes of disturbances, such
as HIGH SUPPLY PRESSURE, and HIGH BACKPRESSURE, a simpler
structure can be achieved.

(3) A third simplification in mini fault trees is deletion of
normal conditions. If event A causes event B under
condition C, and C is a condition which is normally
fulfilled, and there is nothing in the cause of A which
can invalidate C, C may be deleted from the mini fault
tree. The justification for this is that the probability
of a normal condition is close to 1. Deletion of such a
condition will not affect the fault tree calculation
significantly, and will improve its clarity.

(4) If an event produces the same effect under all
conditions, the conditions may be deleted, in a form of
"don't care" simplification. The subsumption rule of
logic can be used to simplify models. If event A causes
B irrespective of C, the mini fault tree involving A, B
and C may be deleted. This is a particularly effective
simplification in combination with normal state deletion.

(5) Logical inversion of conditions is often useful. If a
valve has positions CLOSED, SLIGHTLY OPEN, HAL? OPEN,
FULLY OPEN, the condition NOT-CLOSED can serve a three
fold branching until the "leaves" of the tree are
reached.

(6) Cutset to tieset transformation can reduce branching in
fault trees. If event X in component type K causes event
Y under condition A, and also under condition B and C,
then with models in cutset form, branching increases the
size of the tree six fold for every instance of type K.
By conversion to tieset form, branching is reduced to
four fold.

(7) By using complex conditions, branching can be reduced
even further. Seperate conditions A, B and C can be
reduced to an equivalent complex condition D.

Page 110

(8) A transformation called sequence splitting is very useful
particularly in the analysis of operating procedures. An
event X which can lead to events Y and Z under condition
A, and to event Y and V under condition B, will lead to a
two fold branching if the cause of Y is sought. By
splitting into X -> Y, X & A -> Z, X ft B -> W, this
branching is avoided.

So far the simplifications have preserved the logic of the
models. The remaining simplifications involve approximations
which are generally, but not always conservative.

(9) Possible compensating conditions can be included in mini
fault trees. But if the compensation results in a worse
disturbance in the same direction, the compensating
condition may reasonably be deleted, on the assumption
that a fault tree for worse disturbance will be
constructed. For example, in the mini fault tree for a
valve IN -> LOWPRESSURE, VALVE IS HOT CLOSED => OUT ->
LOWFLOW the condition VALVE IS NOT CLOSED may be omitted,
since it will result in OUT -> NOPLOW, a worse
disturbance. This may be termed "worse effect deletion".

(10) In the theory described in (Taylor, 1982) a distinction
is made between event sequences AB and BA. This is
important if there is a difference in consequences for
the two sequences. This is often the case if for example
A initiates a safety action which takes some time to come
into effect and prevent the results of events A and B.
All cases where sequence is important though involve
loops. In the absence of loops it is permissible to
consolidate the sequences, so that AB and BA are treated
together.

(11) It was pointed out (Taylor, 1982) that a disturbance LOW
at the input to a component can cause a disturbance LOW
at the output (can be corrected by shutdown) or
DISTURBEDLOW (can be corrected by regulation.
The DISTURBEDLOW transition may be deleted provided that
it is known that the larger LOW disturbance is always
worst, and that fault trees will be drawn for the worst
disturbance.

(12) In some cases a failure can prevent an accident, e.g. an
instrument failure causing a trip "just in time" to
prevent a serious incident. Such "miracle" effects can
generally be deleted from models.

(13) It is generally advisable to distinguish between
disturbances caused by failures, and intentional
disturbances caused by control devices, e.g. distinguish
PAILHIGH and CONTROLHIGH disturbances. Otherwise,
algoritms will search in failure structures for sources
of potential control actions.

(14) In components which accumulate energy or mass, such as a
tank, a small, large or very large disturbance in flow
can cause a small disturbance in level either at input or
output. The same six disturbances can carry the level
disturbance to high and then to extreme levels. The
result, in a complete model, is a not very informative

Page 111

216 fold branching in the fault tree; a kind of
"•oaentuB principle", in vhich a disturbance, once
started, continues, requires only that level disturbances
are coded according to their origin. Branching is
reduced to six fold.

(15) With two storage coaponents connected together, a high
level in one causes a high pressure, causing a high
outflow, vhich in turn can cause a high level in the
second, a reduced inflov, and an equalisation of levels.
Such event sequences siaulate level transients in
nultiple storage systems, but are not particularly
enlightening fro« the point of view of failure analysis.
Specific coding of level variations according to cause
can restrict such "ping-pong" event sequences betveen
storages, so that event sequences propagate either
upstream or downstream, but not back and forth.

Page .12

8.2 Size versus completeness of fault trees.

The size of a fault tree is best measured for our purposes in
terms of the number of branches at the highest level of the
tree (i.e., at primt.i*y failure).

If models are build according to the principles mentioned
above and the simplifications 1*15, then a fault tree for a
linear system f\ single pipe line) will have a size which
grows linearly with the number of components. If sequence
simplification is not applied, then the number of branches in
the tree will double at every component, giving which is at
most K*2™ where K is a constant, and H is the number of
components. Vith some 20 components, this gives several
million branches. It is obvious that simplification which is
not necessarily conservative, must, for practical purpose, be
applied.

Without simplification, there is an additional doubling of
fault tree size for some disturbances at every resistive
component.

Models which are build following the pattern in section 8.1
may be termed "fully physically conditioned". At the top
event they will generate up to size branches, and at every Y
junction a four fold branching will follow. The size of a
tree for which simplifications are applied, but which are
nevertheless fully physically conditioned, is therefore less
than K2*4 where H is the number of Y junctions, and K2
is a constant. With 10 Y junctions, this gives a total of
area 1 m branches.

Deletion of the resistance conditions and downstream
compensations yields models similar to those of Martin Solil
et al. (1978). Further deletion of the distinction between
flow and pressure disturbances produces models similar to
those published by Amendola et al. and Berg et al. Further
deletion of transfers of information in two-stream directions
produces models similar to those published by Wu et al.
(1977).

Of these simplifications, the first, deletion of resistance
conditions, is the most effective, since it reduces the number
of branches in the tree to a number proportionally to the
number of components in the system analysed.

One might think that the deletion of resistance conditions is
conservative because cutset sizes are reduced, and generally
it is so. However, in the absence of conditioning, it might
be thought that a safety device would work, when in fact a
pressure signal could not be transmitted past a resistance or
past a Y junction, because, for example, a valve had failed
open. In such cases, the simplification is definitely not
conservative.

On reaching a control component (such as a regulating or shut
off valve), component by component algorithm giv it a branching
in the fault tree, with one branch for the disturbance, and
one branch for failures in any potential control action. For
simple loops such branches soon terminate. But for cascade
loops, and loops with two way flow of information, some

Page 113

branches will not terminate directly, and lead to a global
search of almost the whole system, looking for signals which
might activate the safety action. This corresponds to a
global search for negative loops in Lapp and Powers algorithm.
Fortunately, most of the "compensation" branches of the fault
tree terminate without loop closure, and can be pruned from
the trees.

The many branches of a fully physically conditioned tree
involve many repeated subtrees. An effective strategy is to
store the fault tree as it is generated, and to make a cross
link between parts of the tree when such repetitions are
found. The value of this strategy was noted by (Lapp and
Powers, 1977). this strategy imposes limitations on the size
of fault tree which can be produced however, because of the
storage required during construction. There is also an
insisious pitfall inherent in the strategy, if it is applied
to two alternative (OR gate) branches of a tree. The branches
may involve different timings, or alternative conditions, in
the physical system so that a potential safety action, found
in a repeated branch, is not compatible with all disturbances
requiring that safety action. u>*» of the repetition detection
strategy may be applied at any time above an AND gate, but
should be applied only with care above an OR gate.

Pault tree sizes close to the above bounds are achieved in
practice. For example, the pressurised water reactor high
pressure soolant injection system of (Rasmussen, 1975) gives a
fault tree for loss of flow with branches.

Systems with up to six or seven Y junctions can be treated on
a small computer (128 K bytes) and with perhaps ten Y
junctions on a large computer (2 H bytes). To treat parts of
the fault tree corresponding to each are later interconnected.
In this way, fully physically conditioned fault trees of
unlimited size can be constructed. The repetition strategy
can be applied under close control by analyst.

A useful strategy would be to apply cut off rules to the true
construction, so that, for example fourth or fifth order
cutsets were omitted. This can be done interactively, but
automatical use requires a distinction between possible
"normal state" and "unusual disturbance" branches of an OR
gate.

Page 114

9- REFERENCES.

Amendola, A.; Pouchet, A.; Contini, S.; Squellati, G.;
Mongellunzzo, R.
Component modelling and computer aided fault tree construction
To be published.

Andrevs, J.D.
A user guide to the fault tree and network evaluation program
faunet.
Midlands Research Station, England, november 1983, proj M45

Berg, U.; Hellstrom, P.; Lydeli, B.
Fault tree synthesis using the CAT algorithm.
Report PSA 02-81 Swedish Nuclear Power Inspectorate.

Larsen, P. Dines
Grace user manual.
Riso National Laboratory, april 1982, Riso-M-2343«

Larsen, P. Dines; Olsen, J.V.
A standardized device-independent graphics system.
Interfaces in Computing, 2, 167-179, 1984.

Olsen, J.V.
A data-base management system for FORTRAN-IV on PDP-11.
Riso National Laboratory, Electronics Department,
Internal note to the system. [DBFOR.MEM]

Olsen, J.V.
A device independent graphic language for minicomputers like
PDP-11 or PDP-8.
Riso National Laboratory, Electronics Department,
Internal note to the system. [HCOPY.MEM]

Olsen, J.V.
A device independent graphic package in FORTRAN for PDP-11
under RT11.
Riso National Laboratory, Electronics Department,
Internal note to the system. [GRPLOT.MEMj

Olsen, J.V.
RIKKE - viewed as an expert system.
Riso National Laboratory, Electronics Department.
Internal note to the system. [EXPERT.MEM J. 1984-

Olsen, J.V.; Taylor, J.R.; Nielsen, F.
Use of automatic fault tree and cause consequence analysis
methods in the analysis of a chlorine evaporator. Computers
in chemical engineering - case studies in design and control.
A symposium organised by the London and South-Eastern Branch
of
the Institution of Chemical Engineers. London, June 3rd 1980.

Platz, 0.; Olsen, J.V.
FAUNET: A program package for evaluation of fault trees and
networks.
Research Establisment Riso, Electronics Department, september
1976. Riso Report no. 348.

Page 115

Platz, 0.; Olsen, J.V.
FAUNST: A program package for fault tree and network
calculations.
in Proceedings of the topical meeting, Probabilistic Analysis
of Nuclear Reactor Safety, may 8-10 1978, Newport Beach,
California USA.

Platz, 0.; Olsen, J.V.
Calculating the number and size of prime implicants for a
modularized fault tree.
in Lauger, E.; Moltoft, J.(Eds-): Reliability in electrical
and electronic components and systems.
North-Holland Publishing Company, 1982

Rasmu3sen, N.
Reactor Safety Study. An assessment of accident risks in U.S.
commercial power plants.
WASH-1400, NUREG-75/014, 1975-

Shafagi, A.
Component modelling for fault tree analysis. Doctoral thesis.
Loughborough University. Dept. Chem. Engineering 1982.

Taylor, J.R.
A formalisation of failure mode analysis of control systems.
Riso National Laboratory, October 1973f Riso-M-1654.

Taylor, J.R.
An algorithm for fault tree construction.
Riso National Laboratory, Electronics Department, internal
report april 1980, N-19-80.
Preliminary work for:

Taylor, J.R.
An algorithm for fault-tree construction.
IEEE Transactions on Reliability, vol R-31, N 2, june 1982.

Taylor, J.R.
Automated hazard analysis - pitfalls, perspective and
prospects.
International conference on Risk Analysis, London. OYEZ.

Taylor, J.R.
Automatic fault tree construction with RIKKE - A compendium of
examples, volume 1 basic models.
Riso National Laboratory, september 1981. Riso-M-2311.

Taylor, J.R.
Automatic fault tree analysis of large systems using RIKKE.
Riso National Laboratory, Electronics Department, internal
report, may 1982. N-13-82.

Taylor, J.R.
Automatic fault tree construction with RIKKE - A compendium of
examples, volume 2 control and safety.
Riso National Laboratory, february 1982. Riso-M-2311.

Page 116

Taylor, J.R.
Generality of component models used in automatic fault tree
synthesis.
Riso National Laboratory, march 1979- Riso-M-2162.

Taylor, J.R.; Hollo, E.
A program for plotting cause consequence diagrams.
Research Establishment Riso, Electronics Department. april
1977, Riso Report M-1932.

Taylor, J.R.; Olsen, J.V.
Treatment of operator error in RIKKE-II.
Riso National Laboratory, Electronics Department, internal
report, august 1983- N-22-83.

Taylor, J.R.; Olsen, J.V.
A comparison of automatic fault tree construction with manual
methods of hazard analysis.
4*th Int. Symp. on Loss Prev. and Safety Prom. in the
Proc. Ind., Harrogate, England, september 12-16 1983-
EPCE Publ series, N 33 vol 1, Pergamon Press.

Vu, J.S.; Salem, S.L.; Apostolakis, 6.E.
Use of Decision Talks in Systematic Construction of Fault
Trees.
in Pussel, J.B.; Burdick, G.R. (Eds.): Nuclear Systems
Reliability Engineering and Risk Analysis, SIAM 1977.

Page 117

LIST OP TABLES.

1.1 Levels of information 6

2.1 Some commands in RIKKE 14

2.2 Some commands in GRACE 17

2.3 Link types 21

2.4 Options in command FAULT 30

2.5 Commands in option BREAK ALL 33

2.6 CUT code numbers 38

2.7 Values assigned to gates in different modes 38

4 • 1 Subcommands in GRAPHIC 57

4.2 Subcommands in graphic editor 61

4-3 Subcommands in EDIT of generic library 64

4.4 Legal attributes of generic models 65

7.1 Components in PTLIB3 85

7.2 Discrete levels in PTLIB3 92

7-3 Failure modes in FTLIB3 92

7-4 Components in HAZLB2 93

7.5 Discrete levels in HAZLB2 101

7.6 Failure modes in HAZLB2 102

A.I List of file extensions 118

B.1 List of different gate types 119

C. 1 Input files for tie FAUNET system 120

C.2 Files generated by FAUNET 120

C 3 Legal gate types in free format files 122

C.4 Legal gate types in fixed format files 123

C 5 Calculation types and their input data 124

LIST OP PIGURES.

Page 118

1.1 Block-diagram of RIKKE 9

1.2 A fault tree plotted by PTSHOW 12

2.1 Piping and instrumentation diagram
of a let down drum system 16

2.2 Orientation of a component 19

2.3 First part of a let down system 22

2.4 Part of a let down system 24

2.5 The final let down system 27

2.6 A fault tree for the event DRUM -> BURST

in separator 2. Model LDDRUM 32

4.1 Initial sketch of a tank 58

4.2 Orientation of the ports 59

7.1 Graphic components in PTLIB3 87

7.2 Graphic components in HAZLB2 99

C.1 A fault tree file in free format 121

C.2 A fault tree file in fixed format 123

C 3 Event failure and repair datafiles 125

C.4 Examples of network description files 126

Page 119

APPENDIX A: PILES IN RIKKE AND PAUNET.

Table A.1 List of file extensions.

Filename

*.BLK
*.DIA
#.GCL
#.CMP
#.LIB
#.DGL
#.GML
*.PPM
*.FTR
*.FTX
*.FTN
*.FDA
*.CDR
*.CDX
*.CDN
*.ETR
*.ETX
*.HCB
*.HCF
*.HCD
*.HCC
*.HCM
*.HC0
*.PDA
*.PTE
*.M0U
*.LST
*.TMP
*.C0N
•.DAT
*.FLT
*.CPX
*.PRT
*.ITR
*.RES
*.CSR
*.TSR
*.EDA
*.CSG
*.TSG
*.CSD
*.TSD
*.CSE
*.TSE
*.NET

Content of file

Block Diagram / Draft Description
Draft database
Genetic Component Library
Extracted (Packed) Component Model
Extracted (Packed) Component Library
Graphic Component Library
Extracted Graphic Form(s)
Plant Function/Failure Model
Fault Tree Structure
Fault Tree Text
Fault Tree Text (numeric code)
Failure and Repair Data (for FAUNET calculations)
Consequence Diagram Structure
Consequence Diagram Text
Consequence Diagram Text (numeric code)
Event tree, from FIND
Event tree text
Flow Sheet (graphic code)
Fault Tree (graphic)
Consequence Diagram (graphic)
Cause Consequence Diagram (graphic)
Mini Fault Trees (graphic)
Optional Graphic File
Picture Data (intermediate)
Picture Text (intermediate)
Picture Log (intermediate)
Listing (intermediate)
Temporary file used by varioues routines
RIKKE <=> FAUNET Conversion Table
Fault tree in free format
Fault tree (FAUNET form
Complex Events
Pruned Fault Tree / Reduced tree
Input Tree (intermediate)
Partial Result (intermediate)
CUTSET - Result File
TIESET - Result File
Event Failure and Repair Data
CUTSET - Grouped
TIESET - Grouped
CUTSET - Decomposed
TIESET - Decomposed
CUTSET - Evaluated
TIESET - Evaluated
Network description

Note: * stands for Model or System-name
if stands for Library/Component name

Page 120

APPENDIX B: FAULT TREE PILE CODES IN RIKKE.

Table B.1 List of different gate types.

Code Meaning Graphic type

A Normal event ('A PRIORI') 1
B Normal event in mode 2 ('BAD') 1
C Common-mode event 9
E Spontaneous event 1
P .FALSE. 4
G Good state (latent failure in mode-2) 22
H Halt on break-point 31
I Impossible event (unlinked port in mode-2) 9
L Latent failure 22
N Normal state 22
0 Opened mode-2 loop 9
P Positive state 22
R Remaining state 26
T .TRUE. 4
U Unexpected event (unlinked port) 9
W Working state 22
X AND-gate (in mode-2) 11
& Priority AND-gate 11
+ OR-gate 12
/ Priority OR-gate (in mode-2) 12
= Internal event 1
External event 1
> State caused by event 22

NOT (negation of state) 4
Dot (loop indicator) 21

? Unspecified input (incomplete tree, but fixed) 28
$ END OF FILE

Page 121

APPENDIX C: PILES IN PAUNET.

Table C.1 Input files for the PAUNET system.

Filename Content of file

•.DAT
•.PLT
•.EDA
•.NET

Pault tree in free format
Pault tree
Event Failure and Repair Data
Network description

Table C.2 Piles generated by PAUNET.

Filename Content of file

•.CPX
•.PRT

•.ITR
•.RES

•.CSR
•.TSR
•.CSG
•.TSG
•.CSD
•.TSD
•.CSE
•.TSE

Complex Events
Pruned Pault Tree / Reduced tree

Input Tree (intermediate)
Partial Result (intermediate)

CUTSET
TIESET
CUTSET
TIESET
CUTSET
TIESET
CUTSET
TIESET

Result Pile
Result Pile
Grouped
Grouped
Decomposed
Decomposed
Evaluated
Evaluated

Note: • stands for System-name

Page 122

C.1 Free format fault tree file (*.DAT).

The fault tree file consist of three parts:

(1) The header record, containing the system identifier, max.
6 characters (needs not to be identical to the
file-name).

(2) A list of records, one for each gate in the tree. The
top-gate is normally entered first.

(3) Finally an end of data marker.

An example of a fault tree file is shown in figure C.1. Here
the header contains the system-identifier "CADI".

The following records each define a gate, starting with the
top of the tree. The first character in the record is the
gate type. Valid gate types are listed in Table C.1.
Immediately following the gate type comes the gate-name. All
gates are indexed from 1000 to 2000, while events are indexed
from 1 to 999.

The second number in the record counts the number of inputs to
the gate. This number is limited to 12 (twelve), which means
that in practical examples, where more than 12 inputs are
wanted in a gate, then the gate must be split into two or more
smaller gates of the same type.

Following the input count comes a list of inputs to this gate.
The inputs may be events (number < 1000) or other gates
(number > 999). All the numbers in the gate record must be
separated by comma.

The "$" sign in the last record indicates the end of the file.

CADI
+1000,5,1034,1035,1036,1037,1038
X1034,3,1029,2,16
+1035,3,1030,1031,1024
X1036,3,7,20,1032
X1037,2,2,1033
X1038,5,16,17,21,1028,22
+1029,2,3,5
X1030,2,1023,20
X1031,2,7,19
+1032,3,2,1025,4
+1033,2,1026,1027
+1023,3,1,8,10
X1024,2,4,6
X1025,4,7,13,1518
X1026,2,11,12
+1027,2,16,21
+1028,2,2,7
$

Figure C.1 A fault tree file in free format.

Page 123

Table C.5 Legal gate types in free format files.

Gate type Meaning

+
0
X
x [small wx"]
A

N

Special plot-marker (plotting postponed)

Note: These forms are converted to the preferred one.

C.1.1 Majority gates.

It is possible in the free format file to define a majority
gate collecting n out of m events as in the following example.

M2,1000,3,1,2,3

The number n must follow the type "M". Then comes the gate
number, the number m and finally the list of m inputs. The
gate 1000 in the example represents any (or-ed) combination of
2 out of 3 of the input events and-ed together. The line
above is equivalent to the following.

+1000,3,1010,1011 „1012
11010,2,1,2
11011,2,1,3
X1012,2,2,3

The evaluation of the majority gate above.

The program PREEIN (command: FREE PORM) will convert any
fault tree in free format into the Tixed format needed by the
following programs in the PAUNET package. During the
.onversion all alternate gate types will be translated into
their preferred form, and the majority gates will be
evaluated.

The special plot marker, which consist of the character ""
followed by a gate number is used as an indicator to the tree
plotter (command: PLTSHOW). This marker is skipped by all
other PAUNET programs. It should occur in the file before the
gate itself is defined, and will in a tree plot postpone the
plotting of the gate from its first reference in the tree to a
later one or printed by itself. Hereby a fault tree occupying
more than one page may be well formed.

As an example we can refer to an example, where it was
necessary to enter 1055 as well as 1057 twice in the Dresden-3
fault tree in order to plot it as shown on the pages 24 to 26.

OR gate
OR gate
AND gate
AND gate
AND gate
NAND gate (may be
Majority gate

referred
*

freferred •
(*

used as a NOT gate)
(see below).

Page 124

C.2 Fixed format fault tree files (*.PLT)

The fault tree file in fixed format has the sane structure as
the free format file. It equals the first record contains the
system identifier, maximum 6 characters.

The following gate-records are written in the FORTRAN-format
(A1,14I4). The last record in the file starts with a
"$"-sign, optionally followed by a 4-digit number telling the
highest number allowed for internally created gates. We
recommend the user to omit this number, leaving the "$"-sign
alone in the record.

The set of legal gate types in a fixed format file is limited
to the following set:

Table C 4 Legal gate types in fixed format files.

Gate type Meaning

+ OR gate
X AUD gate

NAND gate (may be used as a NOT gate)

Special plot-marker (plotting postponed)

The fault tree file (CADI.DAT) in figure C.1 may be converted
to fixed format by the command:

FREEFORM SYSTEM CADI

The resulting file (CADI.FIT) is shown below:

+1000
X1034
+1035
X1036
X1037
X1038
+1029
X1030
X1031
+1032
+1033
+1023
X1024
X1025
X1026
+1027
+1028

510341035103610371038
31029 2 16
3103010311024
3 7 201032
2 21033
5 16 17
2 3 5
21023 20
2 7 19
3 21025
210261027
3 1 8
2 4 6

211028 22

4

10

4 7 131518
2 11 12
2 16 21
2 2 7

Figure C.2 A fault tree file in fixed format.

Page 125

C.3 Event data file (*.EDA).

The Event Failure and Repair Data file is format free. It
consist of three parts:

(1) A header record containing the the system identifier,
maximum 6 characters. It must be identical to the
identifier in the fault tree file for the actual problem.

(2) A list of records containing: The component (event)
number, calculation type, failure data, mean repair time
and test interval etc. All the numbers are separated by
comma (","). A list of possible calculation types is
shown in table C.5«

(3) Finally an empty record, or a record containing a "0n

acting as an end-of-file indicator.

Table C.5 Calculation Types and their Input Data.

Calculation
type Meaning Inputs

1 Constant Failure Probability (A)
2 Exp. Fail. Distribution (rate=A) and

Exp. Repair Distr. (mean=B)
3 Exp. Fail. Distr.(rate=A) and

Const. Repair Time (B)
4 Exp. Fail. Distr.(rate=A) with

Const. Repair Time (B) and
Constant Test Interval (C)

The following figure shows an example of an Event Data file.

A*106

A*106 and B

A*106 and B

A*106 , B and C

ESS
11,2,2.,50.
12,2,2.,50.
13,2,2.,50.
14,2,2.,50.
15,2,2.,50.
21,2,2.,50.
22,2,2.,50.
23,2,2.,50.
24,2,2.,50.
25,2,2.,50.
26,2,2.,50.
31.2,2.,50.
32,2,2.,50.
33,2,2.,50.
34,2,2.,50.
51,2,2.,50.
52,2,2.,50.
71,2,2.,50.
110,2,2.,50.
120,2,2.,50.
210,2,0.1,20.
220,2,0.1,20.
230,2,0.1,20.

240,2,0.1,20.
250,2,0.1,20.
260,2,0.1,20.
361,2,0.5,2000.
362,2,10.,200.
363,2,0.5,2000.
364,2,10.,200.
371,2,0.5,2000.
372,2,10.,200.
381,2,0.5,2000.
382,2,10.,200.
383,2,0.5,2000.
384,2,10.,200.
411,2,0.1,10.
412,2,0.1,10.
413,2,0.1,10.
414,1,10000.
421,2,0.1,10.
422,2,0.1,10.
423,2,0.1,10.
424,1,10000.
431,2,0.1,10.
432,2,0.1,10.

433,2,0.1,10.
434,1,10000.
610,2,10.,1.
620,2,10.,1.
710,1,100000.
811,2,0.1,100.
812,2,0.5,1.
821,2,0.1,100.
822,2,0.5,1.
831,2,0.1,100.
832,2,0.5,1.
841,2,0.1,100.
842.2,0.5,1.
851,2,0.1,100.
852,2,0.5,1.
861,2,0.1,100.
862,2,0.5,1.
871,2,0.1,100.
872,2,0.5,1.
901,2,0.1,100.
902,2,0.5,1.
0

Figure C.3 Event Failure and Repair Data file.
(Fro« Plats and Olsen, 1978).

Page 127

C.4 Network description (*.IBT).

A network is described in a (foraat-free) network description
file. This file consist of three parts:

(1) A header record containing the the system identifier,
aaxiaua 6 characters.

(2) A list of records defining the network by its links. A
bidirectional link is described by the link-number
followed by the numbers of the connected nodes (separated
by commas). A unidirectional link is described by a
minus ("-") followed by the link-number, the number of
the outgoing node and finally the number of the incoming
node.

(3) Finally an empty record, or a record containing a n0 n as
an end-of-file indicator.

The link-numbers as well as the node-numbers are used as
component (event) numbers in the fault tree produced as a
description of the wanted cuts or paths in the network. We
therefore recommend the user to specify different numbers for
nodes and links. This a "must" in the case, where both nodes
and links are included in the analysis.

As an example, figure C 4 shows two network-files.

NBBBX2
- 1 , 2 0 , 2 !
-2 ,20,21
-3 ,20 ,22
-4 ,21 ,23
-5 ,21 ,23
-6 ,22 ,23
-7 ,23 ,24
-8 ,23 ,24
-9 ,24,25
-10,23,25
-11,25,27
-12,25,27
-13,25,27
-14,23,26
-15,26,27
-16,26,27
0

JBFIG1
10,1,3
11,3,4
12,4,7
13,7,8
14,1,2
15,2,5
16,5,6
17,6,8
18,3,5
19,5,7
0

Figure C.4 Examples of network description files.
(NBBEX2.NET and JBFIG1.NET).
(From Plate and Olsen, 1976).

http://NBBEX2.NET
http://JBFIG1.NET

Page 128

APPENDIX D: EVENT FAILURE AND REPAIR DATA USED IN FAUNET.

Kind: 1 Constant failure probability p.

Form: <event>,1 ,p*10*>

Kind: 2 Exponential failure distribution with failure rate
lambda and exponential repair distribution with
mean repair time r.

Form: <event>,2,lambda*1 0* r

Kind: 3 Exponential failure distribution with failure rate
lambda and constant repair time r.

Form: <event>,3,lambda*10^,r

Kind: 4 Exponential failure distribution with failure rate
lambda, constant repair time r and constant test
interval i.

Form: <event>,4,lambda*10*>,r,i

<event> stands for the actual event number (integer), while
the arguments p, lambda, r and i are all real numbers.

Note that probabilities and failure rates are multiplied by
106.

The data file (*.EDA or *.FDA) contains:

(1) The system (model) name.
(2) One record of data for each basic event.
(3) Finally an empty record (or a 0) indicating the end of the

list.

Example: BMFT4
1,3,100.,0.5,50.55
2,1,100000.
3,4,80.,10.,672.,27415.3

35,4,10.,100.,672.,3467.3
0

Page 129

APPENDIX E: RIKKE COMMANDS AT A GLAMCB.

Command Program Purpose
called

MODEL none Allows user to define or redefine which
•odel the system is to construct or sake
use of.

VHAT none To find the naie of the plant model
currently being used.

STOP none Stops execution of RIKKE and terminates

a RIKKE session

DRAFT GRACE To activate the drafting input program.

MAKE LHKHOD To build up a plant functional and

failure model.

FAULT PTGEH To produce a fault tree.

TEXT TEXTER To transform fault tree text from
numeric form to a readable form.

PTPLOT CCPLOT To produce a plotting file containing a
fault tree as a series of A4 pages.

FTSUPBR CCPLOT To produce a plotting file containing a
fault tree (not broken into A4 pages).

PLOT PLOT To send a plotting file to the actual
plotting device.

VIEW PLOT To send a plotting file to a graphic
display screen.

FTSHOW TTTREE To plot a fault tree on the typewriter.

CUT PTCUT To prune a fault tree of j«wanted event
types.

Page 130

APPEHDIX F: PAUHET COMHAMDS AT A GLAMCB.

Coaaand Prograa
called

Purpose

SYSTEM FAUHBT

FAUHBT

CUTSET

TIESBT

FAUEBT

CUT

CUT

Allows the user to define or redefine
the sys tea file naae for which the
PAUHET calculations are to be evaluated.
Tells which files are available for this
systea.

Tell the sys tea file naae mnd which
files are precently available for this
systea.

Calculate
tree.

Calculate
tree.

ainiaal cutsets of a fault

ainiaal tiesets of a fault

PATHSBT CUT

CUTSET PRUMBD
CUT

TIESBT PRUEED
CUT

PRURE CUT

RESULT CUTRBS

RESULT OF TISSET
CUTRBS

DECOMPOSE CUTPIY

DECOMPOSE TISSET
CUTPI?

TREE CUTREE

Equivalent to the coaaand: TISSET.

Calculate ainiaal cutsets using a
previousely pruned fault tree as input.

Calculate ainiaal tiesets using a
previousely pruned fault tree as input.

Perfora a aodularisation of a fault tree
and output the pruned fault tree
together with its list of coaplex
events.

Show the result (count of cutsets) froa
a previous calculation.

Show count of ainiaal
previousely calculated.

tiesets

Perfora a pivotal decoaposition of the
ainiaal cutsets previously calculated.

Perfora a pivotal decoaposition of the
ainiaal tiesets previously calculated.

Convert ainiaal cutsets into a pruned
fault tree.

TREE FROM TIESBT
CUTRBE

UHAVAILABILITT [USIM0
UlfAVA

Convert ainiaal
fault tree.

tiesets into a pruned

TIESET] [DECOMPOSED] [REPAIR]
Calculate unavailabilities, and
optionally failure intensities froa

Page 131

cutsets or tiesets using
for the priaary events.

failure data

Hote: Arguments in brackets are optional.

CHECK [DUAL]
TREECH Check consistency of a fault tree file

and calculate the maximum nuaber of cut/
tiesets.

HBTPATH [LIHKS/HODBS] FROM a TO b
TISKET Calculate paths in a network (directed

or not) fro« node a to node b (both
entered as numbers) and optionally
output either the links passed, the
nodes passed or both links and nodes
(default).

IBTPATH LIHKS FROM 5 TO 6
Calculate the set of links passed in all
possible paths from node 5 to node 6.
The output is formed as a fault tree.

example:

FRBBFORM [DUAL]
FREEH

FLTSHOW

PRTSHOV

TTTREE

TTTREB

EVALUATE [TISSET]
CUTBV

GROUPIHG [TIBSBT]
CUTORP

PRIHT

Subcommand:
PILE-NAME

RIKUTL

Convert a faunet fault tree written in
free format to fixed format form,
optionally producing the dual tree.

Plot a FAUHBT fault tree on the
typewriter.

Plot a pruned FAUNET fault tree on the
typewriter.

Evaluate the modularised cutsets
(default) ot tiesets completely and sort
the result.

To divide the calculated cut/tiesets
into independant groups.

Hay be used to print the calculated
cut/tiesets on the typewriter.

Specify the wanted result by combining
the system name and the file type into
a file name.
Example: LDDRUM.CSR

INDEX

Arcs 59
Attribute 65
Availability 48

Break option 33

Check 71
Circles 59
Command all 33
Compatibility 71
Compatible 71
Component description 9
Cut command 33

Decompose 48
Dotted line 24
Draft database 21

Evaluate 48
Extension 49

Failure message 71
Failure model 5
Fault tree 5
Fault tree analysis 48
Fault tree conetruction . . . 10
Faunet 48
Ftgen 28
Ftplot 11
Ftshow 11
Ftsuper_plot 11
Fttext 31

Generate a fault tree 29
Generic component 64
Genlib 9
Gledit 57
Grace 10
Gralib 57
Graphic 57
Graphic component 57

Hardcopy 21
Help 5

Incompatibility 71
Incompatible 71

Library 9
Lines 59
Link 20
Link by cursor 20
Link by names 23
Link type 20

Model 10

Option 21
Orientation 19

Peekhole 21
Piping diagram 10
Plant component 10
Plant failure model 28
Plant flow sheet 5
Plant function 5
Plant model 10
Plot 11
Ports 59
Pruned fault tree 48
Reading type 70
Reliability calculations . . . 48
Rotation 19

Scale 19
Setup 18

Tieset 48
Top event 10
Tree 48

Unavailability 48
Upscaling 19

View 11

Risø National Laboratory RiM-M-0liO

o
00
<»

C*

•
•

S

Title and author(s)

RIKKE

U s e r ' s Manual

P. Haastrup, J . V . O l s e n , J . R . T a y l o r ,

Axel Damborg and N.K.Vestergaard

Department or group

Group's own registration
nuaber(s)

133 pages + tables + i l lustrations

Date
February 1985

Abstract Copies to

RIKKE i s a computer program for r e l i a b i l i t y and

s a f e t y a n a l y s i s of p r o c e s s p l a n t s , e l e c t r i c a l

systems e t s . The program i s a v a i l a b l e in a PDP-1

and a VAX v a r s i o n . The manual g i v e s a d e s c r i p t i o h

of the use of the program as a t o o l in the hazar

a n a l y s i s of an a c t u a l p r o c e s s p l a n t . Furthermore

the manual g i v e s a summary of the p r i n c i p l e s of

bu i ld ing new components as p a r t s of the e x i s t i n g

l i b r a r i e s .

I

Available on request from Risø Library, Rise National
Laboratory (Risø Bibliotek), Porsøgsanlag Risø),
DK-4000 Roskilde, Denmark
Telephone: (0) 37 12 12, ext. 2262. Telex: 43116

