Downloaded from orbit.dtu.dk on: Mar 31, 2019

DTU DTU Library

i

Rikke: Users Manual

Olsen, Jens V.; Forskningscenter Risg, Roskilde; Forskningscenter Risg, Roskilde; Forskningscenter
Risg, Roskilde; Forskningscenter Risg, Roskilde

Publication date:
1985

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Olsen, J. V., Haastrup, P., Taylor, J. R., Damborg, A., & Vestergaard, N. K. (1985). Rikke: Users Manual.
Roskilde: Risg National Laboratory. Risg-M, No. 2480

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://orbit.dtu.dk/en/publications/rikke-users-manual(a16d5774-5c17-4587-ab5e-fd3f9f80b12f).html

RIS0O-M-2480

RIKKE
USERS MANUAL

P. Haastrup, J.V. Olsen, J.R. Taylor, Axel Damborg
and N.K. Vestergaard

Abstract. RIKKE is a computer program for reliability and safe-
ty analysis of process plants, electrical systems etc. The pro-
gram is available in a PDP-11 and a VAX version. The manual
gives a description of the use of the program as a tool in the
hazard analysis of an actual process plant., Furthermore the
manual gives a summary of the principles of building new compo-
nents as parts of the existing libraries.

February 1985
Rise National Laboratory, DK 4000 Roskilde, Denmark.

ISBN 87-550-1079-2
ISSN 0418-6435

Riso Repro 1985

CONTENTS

INTRODUCTION * ® © 5 5> % O 0" SO 6 S ea 000 * & ® ¢ & ® % S O O O 0o O OO S BSOS
1.1. The RIKKE commands and ProgramsS .ceseccsacsoscscas

HOW TO GENERATE A FAULT TREE OR CAUSE-CONSEQUENCE

DIAGRAM ® 505 60 0 00000 S GOG OSSO ED 0SB0 LS008 ESSsHO OB Es

2.1. How to
2.2. How to
2.3. How to

make a modelccecnevesccnsaccancacs -
make a plant failure modelceccvecsees
generate a fault treecc.cococevsoccns

2.4. Interactive use of RIKKE S0 O & 6 5 0 06 600 O 60 00O s s

2.5. How to
2.6, Use of
2.7. How to

cut a fault treecccccnn. eemcsaeaas
execute files in RIKKE ...cccceevceoccccces
generate a cause-consequence diagram

HOWTOUSE FAUNET ASA PART OF RIKKE * ® ® 00 v e O T SOSN8

3.1. How to

convert a fault tree to cutsets ...cccecee

3.2. Analysis of cutsets by FAUNET ..ccoceccoccoccnvene

HOW TO CREATE OR UPDATE A LIBRARY ..ccccecoscscscscnces

4.1. How to
4.1.1.
4.1.2.

4,2, How to
4.2.1.
4.2.2.

4.3, How to

COMMANDS IN

create a graphic componentcc.0...
How to edit a graphic component ...c.cecvves
How to include a graphic component
create a generic component ...c.cceces00c0e
How to edit a generic componené cessesvves
How to include a generic component
check a 1ibrary ccecoceceocscocccocoscnonces

THE RIKKE SYSTEM ® 6P O OOOSOOSOGCGCESIOONNINOSPPOIOEOSIOIOPOEPOSTIOIES

HOWTOGET HELPOI...ll'..l.....'......’.l.l......

THE LIBRARIES ” 0 9 OO O OO 5 0OV OE O SO PO RPN O OO OO N SO PO SESNPENPNSE

7.1. FTLIB3
7.1.7%.
7.2. HAZLB2

Example of a component in FTLIB3 ..cscecese

Page

14
15
28
30
33
38
42
44

48
50
55

56
57
60
63
64
68
70
71

73
82
85
86

94
99

7.2.1. Example of a component in HAZLB2 104

Page

8. FILOSOPHY OF GENERIC MODELLING ...cccocecccesscceccsnsses 107
8.1. Model simplification ® ® ® 0 0PSO 2D 29O OSSOSO SO e e 109
8.2. Size versus completeness of fault trees.......... 112

9-REFERENCES ® 25 800000008 PSP 00N S OO 000 sL sSSP OCEPSOSEDE 114

LIST OF TABLES ® 60 2 00 0680000 ELEEOTH LSOO Lt LSDPOEPSTES 117

LIST OF FIGURES ® 80 500000000000 0000000000D0sesL LISt sse 118

APPENDICES .scccescecccssscssssossasnsssssssnncsscsossascns 119
Appendix A: Files in RIKKE .cccecesccscssoscassessocens 119
Appendix B: Fault tree file codes in RIKKE00.... 120
Appendix C: Files in FAUNETccc00csnecsssccssosss 121
Appendix D: Event data and repair data used in FAUNET. 128
Appendix E: RIKKE commands at a glanceecee000000. 129
Appendix F: FAUNET commands at a glanceccs2s0... 130

INDEx P 65 6060060826 P OO OO P OEDSOLOP PN e NOODIO LSOOI EPE e lE SO 132

A

Page S
1. INTRODUCTION.

RIKKE is a program package intended for support for
reliability and safety analysis of process plants, electrical
systems, electronic, hydraulic systems etc. The theory
underlying plant modelling and failure analysis used in the
system is described in Automatic Fault Tree and Consequence
Analysis (Taylor and Olsen, 1979).

The system is conceived as a set of small programs running on
a small computer (original a PDP-11, bdut RIKKE is now
available in a VAX version) under a command program and making
use of a data base describing process plants, electrical
circuits etc. The programs permits a relatively inexperienced
user to generate fault trees for zlmost any technical systen,
provided the necessary component models are available. The
command program accepts keyboard commands, and on the basis of
these starts other programs. The command input takes the form
of a '"promht-response" system. That is, the command program
sends a message to the user indicating what command is
required next, and the user can then reply. Generally, if in
doubt, the user of the program can receive help by pressing
the carriage return key on the keyboard. In this case the
command program will provide a helping message, most often
indicating which range of commands are possible. (See also
chapter 6).

The individual programs running under the RIKKE program
monitor has a prompt-response input form which is similar to
that for the monitor, which means that to the user the system
appears as one large interactive program package.

The individual failure analysis programs perform steps such as
accepting and storing plant flow sheet, building up a plant
function and failure model, generating a fault tree, or
printing a fault +tree. The programs work by taking some
input, in the form af files stored in a disc storage and as
commands from the keyboard, and produce outputs in the form of
files on disc storage or on a typewriter, 1line printer,
graphic plotter or graphic display.

The programs make use of a data base which describes plant
component +types, plant flow sheets, plant operating procedure
instructions etc. The data base is conceived quite generally,
so that it can support a wide range of different plant model
types (finite state, equation model, energy and mass flow
models, etc.), far beyond the capability of the existing
analysis programs. It is hoped that the RIKKE system will
provide the basis for a continued development of plant safety
and reliability analysis software.

The purpose of this manual is to describe the use of the RIKKE
programs, and to describe that part of the structure and
working of the programs that is necessary for understanding
their use.

It is also the purpose of the manual to provide information
about the libraries developed at RISO National Laboratory and
the principles for executing models.

Page 6

It has therefore been the intention to devide this manual into
parts, with information on the lowest level given early and

with background material in later chapters, in appendices or
in references.

The manual has been written with the intention of fulfilling
the information needs of the END USER, the PRODUCT TECHNICIAN
and the DOMAIN EXPERT. These terms has been defined by Olsen
(1984) and the definition can be seen in table 1.1.

Table 1.1 Levels of information.

End User - The Risk Analyst using RIKKE as a tool for his
Hazard Analysis on a model of an actual process plant
previously fed into the system by a product technician.

Product Technician - A physicist or Engineer with knowledge
about the ~~ocess plant (could be chemical or other type)
which is - be analyzed by the risk analyst. He wuses
RIKKE to perform the modelling of the actual plant based
on engineering drawings and his personal knowledge
together with a library of fault-models for the different
types of components (pumps, pipes, valves, tanks etc.)
from which the plant is built.

Domain Expert - is a physicist or engineer with deep knowledge
about the individual components according, not only to
their ©behaviour under normal conditions as well as
failure modes, but also how they interact when
interconnected in more complex structures.

He stores his knowledge in a generic component 1library
from which the Product Technician builds the final model.

It is not the intention of this manual to give information on
higher 1levels of detail than these three, though artificial
intelligence experts and system programmers has of cause been
involved in development of RIKKE.

Although RIKKE thus contains all elements of an Expert System,
and carries out some important expert tasks - it can never
replace the expert within its area. Instead it may be seen as

an important aid for the Risk Analyst as it carries out some
more trivial tasks.

RIKKE may be seen as an intelligent scratch pad.

For the END USER the important information about how to
generate and cut a fault tree is found in sections 2.3 and
2.4, and the conversion of results to cutsets is found 1in
section 3.1.

For the PRODUCT TECHNICIAN information about how to make a

model of the technical system is found in the sections 2.1 and
2.2,

In practice these two roles are commonly intercorrelated.

Page 7

For the DOMAIN EXPERT who makes and maintains the 1libraries,
information about the tools provided in the system is found in
chapter 4. Further information about the libraries delivered

with the system both for DOMAIN EXPERTS and PRODUCT
TECHNICIANS is found in chapter 7.

For the DOMAIN EXPERT a discussion of the filosophy of generic

modelling and the necessary simplifications is found in
chapter 8.

In chapter 5 the commands available is found and a similar
list can be found in appendix E: RIKKE COMMANDS AT A GLANCE.

In chapter 6 general information about how to obtain HELP is
given.

In the following a short describtion of the RIKKE commands and
programs is given.

Page 8

1.1 The RIKKE commands and programs.

The usual progression of a safety analysis with RIKKE is +the
following. :

(1) A description of a process plant is input to the computer
as a flow sheet, circuit drawing, block diagram etc.

(2) The information from the drawing is combined with

component information drawn from a library of component
models.

(3) Programs are run to carry out different kinds of safety
analysis.

(4) Programs are run to simplify the results of the analysis,
for example to prune fault trees, generate cutsets etc.

(5) The results are drawn graphically.

Each of these tasks is done with the help of different
subprograms in the RIKKE systen.

The structure of RIKKE is shown in figure 1.1.

Page 9

SIILAY

0
=
i

k] -]
E
O
: i i i
]

Figure 1.1 Block diagram of RIKKE.

A number of support programs are necessary in order for the
system to run. The GENLIB (generic component librarian and
editor) program allows new or updated component descriptions
to Dbe input to the program library, component descriptions to
be extracted from the library, and printouts to be obtained
from the component library. There will generally be several
component model libraries in a RIKKE system. This is further
described in chapter 4.

For input of operating procedures to the system (plant
operator procedures or sequential control procedures) the
HOPSA program may be included in the system. This allows
procedures to be written in a programming language like form,
and then to be translated to a 'component' form so that the

rage 1V

procedures can be included into plant models in the same way
as more conventional plant components.

When starting a 'session' (period of use) of RIKKE the first
step 1is +to identify which plant model will be used and which
component library. This identification can be made by means
of the MODEL command. Alternatively if the MODEL command is
not used, any of the programs which need this information will
ask (prompt for it 1if the information has not been given.
The MODEL command is needed when the user wishes to change
from one plant model to another during the session. If the
user has forgotten which model he is using, he can find out by
typing WHAT.

The MODEL and WHAT commands are executed directly by the RIKKE
monitor. Most of +the other commands cause execution of
FORTRAN subprograms. The drawing of the model is further
described in chapter 2.

While executing any of the RIKKE subprograms, only the
commands appropriate to the subprogram can be issued.
Generally a return from a subprogram to the RIKKE monitor is
made when the subprogram is completed, when an error occurs,
or when the STOP command is given in the subprogram.

The first of the RIKKE subprograms to be described is GRACE,
which 1is activated by the command DRAFT. Its purpose is to
allow plant piping diagrams to be entered. This program asks
first which model 1is to be input or modified, whether the
model is a new or an o0ld one, and which component model
library is to be used. (If the program can discover any of
this information for itself, it will not bother to ask for
it). Thereafter, the user can construct the diagram by naming
and placing components, and linking them together. A detailed
description of GRACE is found in +the GRACE User Manual
(Larsen, 1982).

Once a piping diagram has been prepared, it can be turned into
a model of the plant or system using the MAKE command. When
this command has been given, no further commands need to Dbe
given; and no further information is provided, during
execution of the program. A plant model with the current
plant name will be built up. (If the MAKE command is issued
just after starting, RIKKE will ask for the plan: model name).
Once MAKE has been completed, a plant failure model exists and
fault trees and consequence diagrams can be constructed.
(This is described in section 2.2).

The next step in producing a fault tree is to run the actual
fault +tree construction program using the command FAULT. The
program replies by asking which component the TOP event is to
occur in, and to identify the TOP event. The fault tree is
then constructed in an internal form.

The fault trees produced by the FAULT command have text coded
in numeric form. The PFTTEXT command transforms the numeric
form to text describing fault events. PFTTEXT should be used
after execution of PAULT, or, if +time and disc space are
short, after using the CUT command. The CUT command is
described in section 2.4,

Once a fault tree has been produced and texted it may be

Page 11

plotted in any of three ways.

The first form of plotting is on a plotter. This requires
that a plotting file is first produced, by executing the
command FTPLOT. The plotting is then produced on the plotter
itself by executing the command PLOT. The result is produced
as a series of pages in A4 format, with cross page connections
inserted automatically by the FTPLOT program.

The command FTSUPER_PLOT works like FTPLOT, but does not break
the fault tree into A4 pages. In stead a larger drawing may

be glued together from several pieces following the scissor
marks provided.

The PLOT program will also plot plant diagrams, and on issuing
the command the program will ask whether a block diagram
(answer B) or a fault tree (answer P) is required. However
this query will only Dbe made when both fault tree an block
diagram plotting files are present.

The second plotting facility is VIEW, which produces a display
on the display screen. The format of the display is the same
as that produced by PLOT, and requires that the FTPLOT command
has been issued prior to execution of VIEW.

The third set of plotting facilities are for wuse with the
lineprinter. The FTSHOW command allows a plot to be produced
in abbreviated form on the lineprinter. Examples of this kind
of output are shown in figure 1.2. FTSHOW does not require
prior execution of PFTPLOT.

Page 12

DEMO PART: 1

SYSTEM:

Ve - 0O) - <
- -—

Figure 1.2 A fault tree plotted by FTSHOW.

Page 13

The TEXT command produces a disc file of text for individual
events on the fault tree. This text is needed to interpret
the output from PFTSHOW. The file has the name
<{model-name>.FTX, for example PLNTMD.PTX. (A 1list of the
extensions used can be seen in appendix A).

As an alternative FTSHOW, when operated from a display screen,
may produce its result on a disc file.

Before plotting fault trees, it may be desirable to prune them

of wunwanted event types. The CUT command allows this pruning
to be performed.

After this general introduction, each of the steps in the
process of generating fault trees will be described in detail.
In the following examples on both the users commands and the
programs response are often iven. We have adoptz2d the
notation of a exclamation mark ') in the 1left margin to
indicate when a communication to and from the computer is
shown. This exclamation mark is of cause not seen on the
screen.

Page 14
2. HOW TO GENERATE A FAULT TREE.

Starting from the monitor in the PDP-11 or VAX system, you
call the program (installed at the system) by typing:

RIKKE
Welcome to RIKKE

What next:

ruB sam s s e

You are now in the RIKKE monitor, and have a number of
commands at your disposal. Here only some of the relevant
commands are mentioned. The rest can be found in chapter 5.
A 1list can be obtained by typing carriage return (<CR>) or
HELP. In table 2.1 the most important commands are listed. A
full 1list can be found in chapter 6 and in appendix E.

Table 2.1 Some commands in RIKKE.

Possible commands: Used for:

CHECK

Checking if the library is OK

CONVERT Convert a fault tree to FAUNET
form

curT Prune fault tree of unwanted
event types

CUTSET Convert the fault tree to cutset

DRAFT Activate model drafting

FAULT Produce a fault tree

FTPLOT Produce a plotting file / fault

PTSUPER_PLOT

tree (A4 sheets)
Produce a plotting file / fault
tree on one sheet

FTTEXT Add readable text to fault tree

HELP

LIBRARY

MAKE Build up a plant model

MODEL Define or change model name

PLOT Send plotting file to actual
plotter

STOP Stop execution of RIKKE session

UPDATE

VIEW Send plotting file to graphic
display screen

WHAT Ask for current model

The first step in an analysis of a new system is to make a

model.

This is described in the following section.

Page 15
2.1 How to make a model.

In order to make a model of your plant you then type:

: DRAFT

You then call the subprogram GRACE, which handles the
graphics. The program responds:

GRACE
Interactive drafting system
Model name:

veam vem sem vem e

You then define the name of the model. This nrame will
identify your model in all parts of the RIKKE system.

Once the plant model name has been identified by using the
MODEL command or by answering a prompt query, this model name
is fixed, and will be used by most of the progranms.

If no model name has been given, programs will ask the name of
the plant model to be used.

If the user wishes to change the plant model name, he should
use the MODEL command.

As an example we have chosen a system (see figure 2.1) which
consist of two separators, one at high pressure, the other at
low pressure. The system is a 1let down system, as in an
ammonia plant.

Gas containing liquid enters separator 1, and gas without
liquid leaves at the top. The liquid with disolved gas passes
on to separator 2 in which the dissolved gas is released at a
lower pressure. The pressure in separator 1 is usually around
300 bar and in separator 2 around 25 bar.

GAS
Liquid and
Gas .1 Sep!
(high
pressure)

Page 16

Gas (low pressure)

X $(c)
PsV2 ‘“

LT: Level transmitter
LC: Level controller
LS: Level switch (safety

PC: Pressure controler

PSV: Pressure

Figure 2.1

system)

safety valve

Piping and instrumentation
diagram of a let down system.

—s=— Liquid
(low pressure)

Page '7

We call the system LDDRUM:

Model name: LDDRUM
0ld, New or continue: NEW

e s sam s em

The program needs to know from which 1library the components
are to be chosen. With the RIKKE package two libraries are
delivered: HAZLBZ2, with about 25 components, and PTLIB3 (the
original safety 1library) with about 60 components. Here we
have chosen to use FTLIB3. A full list of the components in
the libraries can be found in chapter 7.

Library: FTLIB3
Loading library

(blank screen)

What now:

G cmp Te® sy rem o

We are now in the graphic editoring system, and can draw,
include components from the library and link them together.
If the carriage return is pressed, the possible commands are
shown.Some of the most important are shown in table 2.2.

Table 2.2 Some commands in GRACE.

Command Used for
All Draft all components in the library.
Alter Modify the parameters of an
existing component in the draft.
Component Include a new component in the draft.
Draw Drawing lines, arcs and circles.
Duplicate Duplicate a drawing.
Erase Erase a drawing or component.
Find Find a specified component in the
draft and redraw it in a bigger window.
Grid Draw a grid on the screen.
In Define a new window
with 1/4 of the current area.
Link Link two ports.
Library Change the library.
Move Move a component.
Out Define a new window
with 4 times the current area.
Quit Quit the whole draft. '
Redraw Redraw the current draft.
Relink Delete and reenter
connection between two components.
Save Save the current draft data base.
Setup Define the drawing facilities.
Shift Move the whole draft.
Stop Terminate drafting.
Text Put a text on the draft.
Unlink Delete a specified link between two ports.
Window Define a part of the draft

to be shown on the whole screen.

Page 18

A further description of the graphic editors is found in GRACE
User Manual {lLarsen, 1982). In order to set the drawing
facilities as desired, the command SETUP is used (default
values in parenthesisS:

1

' SETUP
1

! Advanced drafting? (No) <CR>
! Names in output:

! Components? (No) YES
! Occupied ports?(No) YES
! Pree ports?(No) YES
! Text in output:

! Component text?(Yes) NO

! TPree text(Yes) <CR>
! Text new components?(No) <CR>
' Grid(x,y):(100,100) <CR>
! Step(20§ <CR>
! IndiviAual scaling?(No) YE3
! Smooth links(Yes) <CR>
! Dotted links(No) <CR>
! What now:

)

The setup is now as desired for the first component to be
included. Any other setup can of cause be used. If one wish

to terminate the setup list on the way, this is done by typing
an X.

The setup chosen will be active until the drafting is
firished. The next time the Draft command is used, a new
setup is required.

Ve then wish to add a component to the draft:

'

! V¥hat now: COMPONENT

! Type: SEPARA

! Form: 1
Component name: SEP1

The program responds with an activation of the position
systen. Point out the position and type the number from O to
7 or a space according to which rotation is desired. The
orientation is as shown in figure 2.2.

Page 19

out IN
POS
J{E:>l<::}_our !42:>W<::}-IN POS
] 2}»03
IN ouT
POS

PO ' ouT POS Mrm
“k. Spos 7

Figure 2.2 Orientation of a compor-nt.

<SP
Scale 2

The component is now seen on the screen. A good advise: Use
an individual upscaling of 2 or 3 on the main components and
the standard scaling (1) on for instance valves, sensors and
controllers. The option "scaling" 1is chosen in the setup
mode. The order is confirmed by

!
! E
!
! What now: COMPONENT
! Type: REGVLV
! Form: 1
! Component name: RV
' .
Point out position and type:
3

Scale: 1

A v vem

Page 20

The component is shown, confirm by

We now wish to link the two components. We choose to 1link
using the cursor to point position (on a VT 105 or 240 screen)
or the sighting (on a 4014 screen). Pirst we use the command
LINK, then we point out components and confirm:

What now: LIRK

ten 1o TeR vy e vem

Here you may get the responce "Too far away" which means that
the cursor or sighting is pointing to a point too far awvay
from a component or port to identify the component or port.

Then we point out the port and confirm by:

We have now defined ihe beginning of the 1link and we then

point out the second component, confirm and point out the port
on the second component and cenfirm by:

A number of different link types are available (see table

2.3). A 1list on the screen can be obtained by typing a
question mark here.

Page 21

Table 2.3 Link types

P (Por full line)

U (Por up)

D (Por down)

L éFor left)

R (Por right)

C (Por connect)

A (Por arc, using a <SP>

to define the middle point in a curve)

B (Por begin)

E (Por end)

M (Por moveable)
We responded:
!
! P
! What now: STOP
! You have no hardcopy file
! Want one before exit?(Yes) YES
! Want a peekhole?(No) NO
!
'
!

Writing hardcopy file

The hardcopy file is the file, where the graphic information

is

stored. A further description iz found in Larsen (1984).

The peekhole command is used if you want to draw only part of
the system, defined with a window.

VD e TR 1R Ywp cem VN Teg Y

=
o

Current draft not saved

SAVE before exit?(Yes) YES
Keep draft database(No) YES
Picture name was: LDDRUM

What next:

are novw back in the RIKKE monitor.

PLOT
Model name: LDDRUM
Plotting Block-diagram

PLOT on:Plotte
General plotter drive
Options:

DIP AUTO

Page 22

We have now plotted figure 2.3.

OouT PRESS

SV

IN | L
SEP2
| LEV

Pigure 2.3 Pirst part of a let down systen.

We then want to continue our drafting:

Loading draft.

!

! What next: DRAPT

' :

! GRACE

! Interactive drafting system

! Model name: LDDRUM

! 014, new or continue: CONTINUE
'

'

The draft is then shown on the screen. The option CONTINUE is
allowed, because the draft database has been saved. This
database uses the extension *.DIA. (A full list of extensions
is found in appendix A).

Page 23

1

' What now: COMPONENT
' Type: FORGAC

' PForm: 1

' Component nanme: VPRV1

1

The position is then pointed cut and the rotation is given and
confirmed:

to

The name VPRVY is chosen as a synonym of Valve Positioner for
Regulation Valve 1. The maximum number of characters is 6.

To link the two components it is possible to use the pointing
system as described above or to link by names as follows:

1]

! What now: LINK
' K

! PFrom component: RV1

' Port: POS

' To component: VPRV1
! Port: POS

' F

T

The same principle is used to instal a regulation unit
connected to the valve positioner. The regulation unit is
reading signals from a levelsensor (trough an inverter who
invert the out-signal logic from the levelsensor). The screen
will now show the draft as seen in figure 2.4:

Page 24

ouT RESS

FPigure 2.4 Part of a let down system.

We want to connect the 1levelsensor and the 1levelport on

separator 2. This connection is not a part of the fluid
system and we would therefore like to use a dotted line.

The dotted line has no function in relation to the fault tree.

Page 25

The facility 1is provided in order to make a higher degree of

agreement between a piping and instrument diagram and the
model possible.

To draw dotted lines it is nessesary to make a new setup.
This is done by writing SETUP and answer YES to the question
"Dotted lines(No)?".

The commands to create a good lay out of the dotted line could
be as follows:

! VWhat now: LINK

The horizontal and vertical line of sight would now be shown.
Sight in center of separator 1 and press Y (and confirm by Y
once more), find the levei port, the 1level sensor and the
level port on the level sensor and do the same. The text on
screen would now be:

Sepl
Lev
Lev1
Lev

A tem tem s R ew

The horizontal line of sight should now be placed trough level
gate on separator 1 and the vertical line should be placed at
the point where we want the line to change direction (down).
A line can be drawn by giving the direction (L:left; R:right;
U:up; D:down) from the starting point to the cursor. The
correspondance to the RIKKE system is then:

QoUW

The response from the system is the drawing of the wanted
dotted 1line. It 1is possible to draw full lines in a setup
with "dotted lines” by using the order F for full line instead
of L,R,U,D and C for connect (see also table 2.3).

We then continue our drafting by adding supplies and drains to
the not conne-.ied input and output lines on the separators and
valves. The idea is simply to define the border of our system
and to make sure that disturbances from outside your system
(build into the supplies and drains) is taken into account.

The following components has in total been added:

SEP1
SEP2
RV
RV2
RV3
VPRV1
VPRV?2
VPRV3
REG1
REG2
REG3
LEVY
LEV2
INV1
INV2
INV3
TRA2
sve

NI —

The full drawing is seen in figure 2.5.

SEPARATOR
REGULATION VALVE

FORGAC

REGULATOR

LEVEL SENSOR
INVERTER

TRANSA
SAFETY VALVE
DRAIN

SUPPLY

Page 26

SEP2

Page 27

[1.
=%

Figure 2.5 The final let down system.

Page 28

2.2 How to make a plant fai,ure model.

After finishing the model, we are interested in making a plant
failure model. In the RIKKE monitor we use the command MAKE.
The input data for the plant failure model generator is the
block diagram file, with the extension *.BLK, just created by
the DRAFT command.

The command will work independent on whether the model has
been plotted or seen on the screen.

Nevertheless it is a good idea always to have a plot of your
mudel in front of you, when you make the fault tree. The
plant failure model consists of a 1ist of components, their
failure models and their connections. The plant failure model
uses the extension *.PFM.

-RIKKE-
Plant description Linker

Model name:LDDRUM

LIBRARY: FTLIB3

COMPONERT: SEP2 - NEW TYPE: SEPARA
COMPONENT: RV - NEW TYPE: REGVLV
COMPONENT: VPRV1 - NEW TYPE: PORGAC

COMPONENT: REG1 - NEW TYPE: REG
COMPONENT: INV1 - NEW TYPE: INVERT
COMPONENT: LEVY1 - NEW TYPE: LEVSNS

COMPONENT: SEP1 - TYPE: SEPARA
CONNECT: SEP1 - PORT: DRN TO: RV - PORT: 1IN

CONNECT: SEP2 - PORT: 1IN TO: RV - PORT: LEV
COMPONENT: RV2 - TYPE: REGVLV

COMPONENT: VPRV2 - TYPE: TFORGAC

COMPONENT: 1INV2 - TYPE: INVERT

COMPONENT: REG2 - TYPE: REG

CONNECT: RV2 - PORT: 1IN TO: SEP2 - PORT: OUT
CONRECT: CRV2 - PORT: POS TO: VPRV2 - PORT:

CONNECT: INV2 - PORT: 1IN TO: REG2 - PORT: OU
COMPONENT: TRA2 - NEW TYPE: TRANSA

COMPONENT: SV2 - NEW TYPE: SV
COMPONENT: LEV2 - TYPE: LEVSKS
COMPONENT: INV3 - TYPE: INVERT
COMPONENT: REG3 - TYPE: REG

COMPONENT: VPRV3 - TYPE: TFORGAC
COMPONENT: RV3 - TYPE: REGVLV
CONNECT: REG3 - PORT: OUT T0: VPRV3 - PORT:

CONNECT: RV3 - PORT: 1IN T0: SEP2 - PORT: DRN
CONNECT: SEP2 - PORT: 8V TO: §SV2 - PORT: 1IN
COMPONENT: 1 - NEW TYPE: DRAIN

COMPONENT: 2 - TYPE: DRAIN

COMPONENT: 3 - TYPE: DRAIN

COMPONENT: 4 - TYPE: DRAIN

CONNECT: 4 - PORT: 1IN TO: RV3 - PORT: OUT
CONNECT: SV2 - PORT: OUT T0: 3% - PORT: 1IN
CONNECT: RV2 - PORT: OUT T0: 2 - PORT: 1IN
CONNECT: SEP1 - PORT: OUT T0: 1 - PORT: 1IN
COMPONENT: 2 - NEW TYPE: 3UP

CONNECT: S - PORT: OUT TO: SEP1 - PORT: 1IN

e A Am A Sk V= A N VB TR Y TE T v VD e VD Ve Y tewp Vb YD VNN D YD VD VD tead Jeb PmS e v 0D S Ve Vmf (S mS cmf P PR i (U PR FUP TW e (TS PED fWP PP YWD NS rmp PO ED D ¢ w0

What next: MAKE

CONNECT: RV - PORT: POS TO: VPRV! - PORT: POS
CONNECT: VPRV1 - PORT: 1IN TO: REG1 - PORT: OUT
CONNECT: REG! - PORT: 1IN TO: INKVi - PORT: OUT
CONNECT: INV1 - PORT: 1IN TO: LEV1 - PORT: OUT

CONNECT: SEP1 - PORT: LEV TO: LEV1 - PORT: LEV

POS

CONNECT: VPRV2 - PORT: 1IN TO: INV2 - PORT: OUT

T

CONNECT: TRA2 - PORT: OUT TO: REG2 - PORT: 1IN

CONNECT: SEP2 - PORT: LEV TO: LEV2 - PORT: LEV
CONNECT: LEV2 - PORT: OUT TO: INV3 - PORT: 1IN

CONNECT: TRA2 - PORT: 1IN TO: SEP2 - PORT: PRESS
CONNECT: INV3 - PORT: OUT TO: REG3 - PORT: 1IN

IN

CONNECT: VPRV3 - PORT: POS TO: RV3 - PORT: POS

Page 29

When this plant failure model has been made, you are ready to

generate the fault tree.

Page 30
2.3 How to generate a fault tree.

All the components and the connections between them are now
prepared for making a fault tree. To make a fault tree we use
the command: FAULT. A number of options are possible. These
are shown in table 2.4.

Table 2.4 Options in command PAULT.

o
o
(4
[dd
o
-

Meaning

Break
Internal
Depth

Time
Loop-stop
Event list
Show
Continue

QuUuEHITHW

To solve our first small problem we have chosen the option
D(epth).

The syntax for specifying the TOP event is
{variable name> BECOMES <value>
for example

OUT BECOMES ON

What next: FAULT OPTION

-RIKKE-
Fault-tree Generator
Model name: LDDRUM

Top-Event occurs in Component: SEP2
Top-Event: DRUM -> BURST
Break evaluation at fault-tree level: 2

START AT 11:32:11
PINISH AT 11:32:19
THE CALCULATION TOOK
6 SECONDS
PROBLEM SIZE - MODE 1:
3 - MODE 2: 2

Nt YR T tem e Yt Y rew v sl sem b tew) v

The fault tree is now generated. The resulting files have the
extensions *.FTR (structure), *.PTX (text) and *.PTN (numeric
text code).

In order to do the calculations faster, <the computer works
with the text stored in one database and numbers specifying
the text elsewhere. It is therefore necessary to add readable

Page 31

text to your fault tree using the command PTTEXT:

What next: PITEXT

-RIKKE~
P-T or C-D Texter
Model name:LDDRUM

We now want to plot the fault tree. Two different commands
are available, namely PTSUPER PIOT and PTPLOT. The
PTSUPER_PLOT produce one large drawing of the fault tree,
vhereas PTPLOT devides the fault tree into A4 pages. VWe have
chosen the command FTSUPER PLOT. The resulting fault tree is
stored in the file with extension *.HCF.

What next: FTSUPER_PLOT

-RIKKE-

Cause-Consequence-Diagram Plotter
Model name:LDDRUM

-RIKKE-
CCD and Fault-tree plot

Plot name:LDDRUM
BLOAD
BSUCC
LVLASS
BALANRC
BSHOW
BMOVE
11 9
DRAW
ADDTXT
FPINISH

Vhat next: PLOT

RIKKE
General Plotter Driver
Model name:LDDRUM
Plotting Fault-tree
or Block-diagram ? FAULT-TREE
PLOT ON: PLOTTE
General plotter drive

Options: DIP AUTO
Please change paper on plotter - DONE
What next: STOP

goodbye

cB Sewm S YEE TWR WD SEE TR VER G WE T VS VWS WM Y CWE VER WE 1D TW HN Yl TER 1D TS vah ‘D (R VR e YW (R U VWD VD Jem Y v rem

Page 32

Many of the programs provide prompts, describing the input
which is required next. e.g. 1in the VIEW program, "Fault
tree, or Block diagram”. Por these prompts the capital
letters in the prompt, introducing the words describing
alternatives, are acceptable responses. In the example, a
response "B" will allow a block diagram to be plotted.

The resulting fault tree is seen in figure 2.6.

o el B | (mmES.
=) T =2 | &S

TWERSS | \T=EEe | \Tass- | |\
—_— J
3

Figure 2.6 A fault tree for the event DRUM -> BURST
in separator 2.
Model LDDRUM. Library PTLIB3. DEPTH = 2.

Page 33

2.4 Interactive use of RIKKE

In the RIKKE system you may choose the other options when you
generate your fault tree. The following options are possible.
The most important are the BREAK option, which together with
the component specification ALL, convert the program from an
automatic fault tree generating program to a very powerful
interactive tool. By using this command you yourself can
decide how far a given branch of the fault tree is to be
analysed. This means that it is possible to combine the logic
in the computer, with your engineering judgement during the
generation of the fault tree. This will reduce the size of
the fault tree, and you can therefore analyse larger systems,
or use more complicated models as you wish.

In the VAX version 2.8 of the RIKKE system (Not released yeb)
a further sophisticated option can be used. The Option
permits the user to follow the development of the fault tree
on one screen, while another shows the piping and
instrumentation diagram, and indicates where the generation is
at the moment. This option (SEND) can already be used with
two PDP-11 computers.

In the following an example of the interactive use is shown.
The possible commands is shown in table 2.5.

Table 2.5 Commands in option Break All

B Break or

H Halt - stop analysis here - take next alternative
T This event is always TRUE
F
S
c

This event is always FALSE
Stop analysis here and on all following break-points
and any other response - continue analysis

! RIKKE2
! What next: FAULT OPTION B
}

i -RIKKE-

! TPault-tree Generator [V4G]

! Model name: LDDRUM
! Top-Event occurs in Component: SEP2

! Top-Event: DRUM -~> BURST
!

! Break-Point in Component: - ALL

!

! START AT 08:50:53

! SEP2: DRUM -> BURST 0

! SEP2: P -> OVERPRESS 0

! SEP2: P -> Hi -10

! SEP2: P -> DH1 -20

! SEP2: O0UT -> BLOCKED =30

: RV2: IN -> BLOCKED =30 C

! RV2: POS -> PAILCLOSED 30

5 VPRV2:P0S ~> FAILCLOSED =30 : C

i

VPRV2:IN -> FAILHI -30

Bt S S Y SwB T Swm B VW tem VS t=m A S VAR TR S Am am T tam tem ((T cwg $%E S AR TR IE Cem (WS (WD Wm WP WS SmE 1D S Sap T TS (W WP fW D TS W TER (W WS D tER R YW S ' rap sem cw

THV2:

INV2:
REG2:

REG2:
REG2:
REG2:
REG2:
TRA2:

TRA2:
TRA2:
RV2:
2:

RV2:
SEP2:
RV:

SEP2:
RV:

SEP2:
Sve:

Sve:
Sve:
SEP2:

SEP2:
Sy2:

SEP2:
SEP2:
SEP2:
SEP2:
RV:

SEP2:
RV:

SEP2:
RV:

SEPZ2:
SEP2:
SEP2:
SEP2:
SEP2:
RV:

SEP2:
RV2:

SEP2:
RV2:

SEP2:
RV2:

0UT -> PAILHI

IN -> PAILLO
OUT -> PAILLO

SET -> ERROR
WSTATE -> PAILLO
PWR -> PAILOFP
IN -> PFAILLO

OUT -> PAILLO

WS -> L0 INPUT
WS -> PATLLO

OUT -> BLOCKED
IN -> BLOCKED

WS -> BLOCKED
WS -> BLGCKED
IN -> HISUPPC
OUT -> HISUPPC

IN -* SHUTOFP
OoUT -* SHUTOFP

SV -* RELIEVED
IN -* RELIEVED

IPOS -* OPEN
IN -* HISUPP
SV -* HISUPP

SV -* RELIEVED
IN -* RELIEVED

TEMP -> HI
TX -> DHT1
TX -> DHTZ2
IN -> DISTHIT
OUT -> DISTHIT

IN -* SHUTOPF
OUT -* SHUTOFP

IN -* SHUTOPP
ouT -* SHUTOFP

X -> DEM
I0UT -> REVPLO
P->1L3

P -> DL3

IN ~-> LOSUPPC
OUT -> LOSUPPC

OUT -* SHUTOFP
IN -* SHUTOPP

0UT -* SHUTOPF
IN -* SHUTOPF

oUT -* SHUTOFF
IN -* SHUTOFF

Page 34

T VR YR YR SWR SUR AWR VUM TWH twp VSR TR TWE VW (AR A (Wl twl (R twl twl (G (SE AG) TGN (W (O YD (O (W 1O (e (U O ley YN YO (G ()) I I I (R (D R 1D 'R e W Y T RELET BLEL L T NY N1 MY |

SEP2:
SEP2:
SEP2:
SEP2:
RV2:

SEP2:
RV:

SEP2:
RV:

SEPZ2:
RY:

RV:
YPRV1

VPRV1
REG1:

RV:
RV:
SEP2:
RV:

SEP2:
RV2:

SEP2:
RV2:

SEP2:
RV2:

SEP2:
SEP2:
RV2:
SEP2:
RV:
SEP2:
RV:
SEP2:
Sv2:
SEP2:
SEP2:
SEP2:
RV3:
SEP2:
RV:
SEP2:
RV3:
SEP2:
RV3:
SEP2:
RV:
SEP2:
RY:
SEP2:
RV:
SEP2:
RV3:

oUT -> SUP

P -> DL2

P <> DIt

0U? -> ATH

IN —> ATH

IN -> ROSUPP
oU? -> NROSUPP
IN <> ATH

0UT -> ATR

IR -> BLOCKED
0UT -> BLOCKED

POS -> PAILCLOSED

:POS -> PAILCLOSED
:IN -> PAILHI

CUT -> PAILHI

IN -> BLOCKED

WS -> BLOCKED

IN -> DISTLOSUPPC
0U? -> DISTLOSUPPC

OUT -* COMPHIBACKPC
IN —* COMPHIBACKPC

0UT -* SHUTOPP
IN -* SHUTOFPP

0UT -* SHUTOPP
IN -* SHUTOFF

oUT -> SUP

0UT -> HOT

IN -> HOT

IN -> HIT

oUT -> HIT

IN -* SHUTOFF

OUT -* SHUTOP?

SV -* RELIEVED

IN -* RELIEVED
DRUM -> PULL

DRN -> REVPLO

DRN -> BLOCKED

IN -> BLOCKED

IN -* SHUTOFP

0UT -* SHUTOPP
DRN -> DISTHIBACKP
IN -> DISTHIBACKP
DRN -> HIBACKP

IN -> HIBACKP

IN -* SHUTOPP

OUT -* SHUTOFP

IN -> HISUPP

OUT -> HISUPP

IN -> DISTHISUPP
OUT -> DISTHISUPP
DRN -* COMPLOBACKP
IN -* COMPLOBACKP

-110
-110
-210
-220
-220

-220
-220

-220
=220

=220
=220

-220
-220

=220
-220

=220
=220
=310
=310

=310
=310

=210
=210

-110
-110

-110
-110
-110
-110
-110
-100
-100

-10
-110
-20
-20
=20
=20
-110
-110
-20
=20
-20
=20
-110
-110
-110
-110
-110
-110

Page 35

STCPPED
STOPPED
STOPPED
STOPPED

STOPPED
STOPPED
STOPPED
STOPPED
STOPPED
STOPPED
STOPPED
STOPPED

SEP2:
SEP2:
sSv2:
SEP2:
SEP2:
SEP2:
SEP2:
RV2:
SEP2:
RV2:
SEP2:
RV:
SEP2:
sv2:
SEP2:
SEP2:
SEP2:
RV2:
SEP2:
RV:
SEP2:
RV:
SEP2:
Sv2:
SEP2:
SEP2:
SEP2:
RV:
SEP2:
RV:
SEP2:
RV2:
SEP2:
RV:
SEP2:
Sv2:

TSN ¢um (om 'O tEQ rAD YWD t@D)aD (WD

Here the events are listed.

0U? -> TOOSHMALL
SV -®* RELIEVED

IN -® RELIEVED
PRESS -> HI

P -> R2

P -> DH2

OUT -> SHUTOFP

IN -> SHUTOPP

0UT -> HIBACKPC

IN -> HIBACKPC

IN -* SHUTOPP

0UT -* SHUTOPP

SV -® RELIEVED

IN -® RELIEVED

P -> H4

P -> DR4

OUT -> DISTHIBACKPC
IN -> DISTHIBACKPC
IN -* CONPLOSUPPC
0U?T -* COMPLOSUPPC
IN -* SHUTOFP

0UT -* SHUTOPP

SV -* RELIEVED

IN —* RELIEVED

P -> H3

P -> DH3

IN -> SCUM

OUT -> SCUM

IN -> DISTHISUPIC
O0UT -> DISTHISUPPC
0UT -* COMPLOBACKPC
IN -* COMPLOBACKPC
IN -* SHUTOPP

0U? -* SHUTOPP

SV -* RELIEVED

IN -* RELIEVED

PINISH AT 08:53:11

THE CALCULATION TOOK 2 MIRUTES 17 SECONDS
PROBLEM SIZE - MODE 1:

29 - MODB 2:

is

-10
-10
-10
-100
-10
-20
-30
-30
-30
-30
-20
=20
=20
-20
-10
=20
-30
-30
-30
-30
=20
=20
=20
-20
-10
-20
=21
=21
-30
-30
-30
-30
-20
-20
=20
-20

3

"becomes” and "-*" means "does not become”.

Page 36

STOPPED

STOPPED
STOPPED
STOPPED
STOPPED

STOPPED
STOPPED
STOPPED
STOPPED

STOPPED
STOPPED
STOPPED
STOPPED

STOPPED

interpretated

Page 37

This problem is too large to print in this m=manual, and the
command CUT is therfore used. The command is futher described
in section 2.5.

Page 38

2.5 How to cut a fault tree.

Before plotting fault trees, it may be desirable to srune them
of unwanted event types. The CUT command allows th.s pruning
to be performed. When the CUT command is given, the program
asks which type of cutting is required. The cutting type is
selected by typing a number. This number should be the sum of
the code numbers for each type of cutting required. The code
numbers are given in table 2.6. A copy of table 2.6 can be
obtained by pressing the carriage return key at the point
wvhere the type of cutting required is asked by the program.

Table 2.6 CUT code numbers.

1 - Drop remaining states
2 - Drop impossible events
4 - Drop normal conditions
8 - Drop unexpected events
16 - Suppress intermediate events/states
32 - Drop unserviceable states
64 — Drop common-mode events
128 - Drop negative loops
256 - Drop unlinked working states
512 - Drop opened loops
1024 - Assign "TRUR" and "FALSE"

Table 2.7 shows in details what gate types are modified, and
what values are assigned at each different cutting mode.

Table 2.7 Values assigned to gates in different modes.

CUT code Gate type Assigned value Tree mode
1 "R" with no inputs .TRUE. 1
2 "In .TRUE. 2
4 "B" or "N" with no inputs .PFALSE. 2
"A" with no inputs .TRUE. 1
8 g -FALSE. 1

16 an,vvzn'vv#n’n>n,nPu and "w"

with one input Value of input -
32 "P" with no inputs .TRUE. 2
64 new .FALSE. 1
128 "-" with "."” -FALSE. 2
256 "W" with no inputs .FALSE. 2
512 "on .TRUE. 2
1024 npn .TRUE. -
"p" .FALSE. -

The fault tree build in section 2.4 is pruned as an example of
the use of the CUT command. We have chosen to cut all kind of
unwanted event types, and the sum of the cut code numbers (the
mode) is therefore 2047. The pruned tree is called 1D2047.

PR YR TSR MR tep (WS IER mf TP (D VR (U S raf tew s VD YWD P

What next:

-RIKKE-
Fault-tree Cutter [V2P]

Model name:
Mode:

Model-name for the pruned Tree:
Cutting text-file

Cutting text-file [numeric]
PRUNING FINISHED [571 / 579]

What next:

FILE: LD2047.PTR - SYSTEM:1D2047 FROM LDDRUM

Page 39

cuT

LDDRUM
2047

LD2047

PTSHOW

rage 40

!

!

!

!

!

!

!

!
218

un <
- = O\J P SN oV = o] -
N 1 9V 1 =
| |
| |
1 |
Q© - - | [Tl
PN ORI TN oV o] | " ot o o s et e e
1 N l./_ N " “ [V o
{ 11
! [
N [-—
N - -0 - . B N e @}
[« - . “ o m
|
~ o N
O . =t esemims - O - N\
! o ’ o \ -—
|] |
] | \
- |]]
- - M\ - < ! | (@]
[T o I S N aAY - UL TN @ N« o | = e oms e [- - O\
- -— - o t 1 6&' -t -—
- [|
! t
(]
- [
N o N0 S SR Y X | - —
— - . “ w
P Y B ~— - @ m
| [} O =~ [} -
| O 1 | 1
-\] N = O -
L b Y
~Ne N g - 1 NN i
-~ it -
-— ! (L
N Y N I O e P e
O - - |.|.|.\" < m
] P TV o P T~ B =0 K
s I 1 1 <t I oV [T X
E-4 | | | t !
[| -\ I | o~ = -] s e\ -~
-1 [\ O [| — - \ \ [\ -
Ay ! 1 (I t - 1 |
N . s [] e A A @] <] 1 ~=~/m
o~ -~ i N - 1 g}
< ' [| |
o T N I R il LI |] t .~ M\R
o~ «-— — s et et e et Wt e |])
a 1 -~ 1
= ~N - O - -
[L8\ Lol
oo -~
= |~~~ am
m 1 A8
E~ |
0N !
> |
9] |

|
i
E

o=t Gms Sm8 @mi Gmo Gms @m¢ Gmo Gmi Gms $mb Gmo Gmt Gmt Grt Gm) Gmé Gmb Gms Gt Smb Gms Gms Bml Gmb Gml Gms Gm0 WmS Gmb G-) Smd GRO Gml @es Gm0 Gnl Sed SRL Gnt S0 GRS GRe B GRS R EnL SnL amD Eme SR Em Ens e SR e

3

VD s VAP VD D PR VY (WD ¢ 0~ D tewp CwmD P VP VD Sy CUP CwW S S Py

Page 41

SYSTEM: LD2047 PART: 2

225
&
1
J====] 1\ ===\
! ! !
229 241 244
+ H H
1
/-/\-=\
! !
232 231
H &
't
/=/\=-=\
! !
235 238
H H

The text to this fault tree is stored in LD2047.FTX:
LD2047 FROM LDDRUM

1
31
32
33
37
38
40
24
41
44
62
75
78

150
153
156
200
201
204
207
215
218
221
224
232
235
238
241
244

VR N VEA SR SR AWEA VER SR WS S AT SEE LD tema ER VSER VR VER T R SWEA A AME VR 4B TR YA AU Sl CNE am

SEP2
REG2
REG2
REG2
TRA2
TRA2

:DRUM BECOMES BURST

:SET BECAME ERROR 30 SECONDS AGO
:WSTATE BECAME FAILLO 30 SECONDS AGO
:PWR BECAME FAILOFF 30 SECONDS AGO

WS
WS

BECAME LO_INPUT 30 SECONDS AGO
BECAME FAILLO 30 SECONDS AGO

2 :WS BECAME BLOCKED 30 SECONDS AGO

RV2 :WS BECAME BLOCKED 30 SECONDS AGO

RV :0UT BECAME HISUPPC 30 SECONDS AGO

RV :0UT DID NOT BECOME SHUTOFF 20 SECONDS AGO
SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
RV :0UT BECAME DISTHIT 1110 SECONDS AGO

RV :0UT DID NOT BECOME SHUTOFF 1100 SECONDS AGO

RV
RV
Sv2
RV2
RV?2
RV
Sve
RV2
RV :
RV :
sv2
RV :
RV :
RV?2
RV :
Sv2

:IN
:IN
¢ IN

:0UT

:IN
¢ IN
ourT
ourT
¢ IN
ourT
ourT
¢ IN
our
¢ IN

81 RV :0UT DID NOT BECOME SHUTOFF 1000 SECONDS AGO
:OUT
:0UT

BECAME HIT 110 SECONDS AGO

DID NOT BECOME SHUTOFF 100 SECONDS AGO
DOE3 NOT BECOME RELIEVED

BECAME SHUTOFF 30 SECONDS AGO

BECAME HIBACKPC 30 SECONDS AGO

DID NOT BECOME SHUTOFF 20 SECONDS AGO

DID NOT BECOME RELIEVED 20 SECONDS AGO
BECAME DISTHIBACKPC 30 SECONDS AGO

DID NOT BECOME COMPLOSUPPC 30 SECONDS AGO
DID NOT BECOME SHUTOFF 20 SECONDS AGO

DID NOT BECOME RELIEVED 20 SECONDS AGO
BECAME SCUM 21 SECONDS AGO

BECAME DISTHISUPPC 30 SECONDS AGO

DID NOT BECOME COMPLOBACKPC 30 SECONDS AGO
DID NOT BECOME SHUTOFF 20 SECONDS AGO

DID NOT BECOME RELIEVED 20 SECONDS AGO

Page 42

2.6 Use of command files in RIKKE.

When you are familiar with making fault trees and
cause-consequence diagrams, you can operate the RIKKE system
with a set of command files. You can design your own command
files, which contain different combinations of commands to the
RIKKE system. Some times you make wish to make only the fault
tree in an interactive way, and some times you would like to
have both cutsets, tiesets and pruned fault +trees. Each
command file can contain the commands needed for the different
analysis.

As an example we have made three command files: one for the
plant failure model building and fault tree generation, one
for the cutting of the fault tree and one for +the generation
of cutsets and tiesets.

'DEMEX1 .EXE -~ EXAMPLE OF A
'COMMAND FILE WITH PLANT FAILURE
!MODEL AND FAULT TREE GENERATION
MODEL

DRAFT OLD HAZLB2

PLOT B OPTION 'DIP AUTO®

MAKE

FAULT OPTION D LEVEL ALL

FTTEXT

FTSUPERPLOT

VIEW FT

FTSHOW

CONVERT FT

FTCHECK

'DEMEX2.EXE - EXAMPLE OF A
! COMMAND FILE WITH CUTTING
CUT

FTSUPERPLOT

VIEW FT

FTSHOW

TYPE

PLOT FT OPTION 'DIP AUTO'

'DEMEX?.EXE - EXAMPLE OF A

!COMMAND FILE WITH CUTSETS AND TIESETS
CUTSET

EVALUATE

PATHSET

As you can see the commands are placed in seperate lines with
the attached subcommands in the same line. If a line begin
with an exclamation mark, the rest of the text in the line is
only viewed as comments which is shown on the screen, but not
executed as commands.

When you want to use the command files you enter the RIKKE
program and make a draft of the plant in an ordinary way.
Then you first make the plant failure model and the fault tree

by typing:

Page 43

! What next: EXECUTE DEMEX1

and the commands in the file DEMEX1 will be executed. You can
follow the execution on the screen, since the commands are
typed as they are executed. For some of the commands in
DEMEXYT we have not given all the information needed for
execution of the commands, and we are then asked interactively
for the missing information.

Then next: !DEMEX1.EXE - EXAMPLE OF A
Then next: !COMMAND FILE WITH PLANT FAILURE
Then next: !'MODEL AND FAULT TREE GENERATION

Then next: MODEL

Model name: LGTANK
The model LGTANK contains:

Block-diagram

Then next: DRAFT OLD

- GRACE

Interactive drafting system
Model name: LGTANK

01d, new or continue: OLD
Loading draft

QD ses Yeas S T Gup VY G T ep VS C=h PP TP ey VS P

Then the draft is shown on the screen, and if you are
satisfied with the draft, you can stop the drafting in the
usual way. The commands in the command file DEMEX1 will then
continue to be executed until the command STOP is reached, and
you leave the RIKKE system.

Page 44

2.7 How to generate a cause-cons.quense diagram.

The cause-consequence diagram show the effects of a given
event. In the fault tree generation you determined a top
event and the RIKKE program found the causes to this event.
In the cause-consequence diagram building you choose an event
and the RIKKE program will find the possible consequences.
For each consequence you can decide whether you think it is
reasonable or not; B stops further analysis of the
consequence; U stops unwanted consequences; S stops further
analysis and C continue the analysis. The program package is
activated by the command CONSEQUENCE and need information
about the component name and the initial event type. As an
example we will make a cause-consequence diagram of the LDDRUM
system. The initial event is IN -> HIT and it occurs in SEP2:

SEP2: P -> OVERPRESS 11
RV3: OUT -> HIT 110
SEP2: DRUM -> BURST 110 :
SEP2: T -> HI "
SEP2: DRN -> HIT 1

—
o
oXoNeleNe]

RvV2: POS IS OPEN 110
\--- conditioning
RV2: OoUT -> HIT 110

Q

!

! What next: CONSEQUENCE
! -RIKKE-

! Consequence-Diagram Generator [V3A]

! Model name: LDDRUM
! 1Initial-Event occurs in Component: SEP2
! Initial-Event: IN -> HIT
1

; Comp. Event Time

! SEP2: TEMP -> DISTHI 10 : C
! SEP2: TX -> DHT 10 : - C
| Y

! SEP2: IN ISNT SHUT 10

! \--- conditioning

! SEP2: OUT -> DISTHIT 10 : C
| Y

! RV3: POS IS OPEN 10

! \--- conditioning

! SEP2: T -> DISTHI 10 : C
! RV3: OUT -> DISTHIT 10 : C
! SEP2: DRN -> DISTHIT 10 : C
| Y S,

! RvV2: POS IS OPEN 10

! \--- conditioning

! RV2: OUT -> DISTHIT 10 : C
: SEP2: TEMP -> HI 110 : C
! SEP2: SV ISNT RELIEVED 110

' \--- conditioning

! SEP2: OUT -> HIT 110 : - C
| I

! RV3: POS IS OPEN 110

! \--- conditioning

)

'

'

1

!

'

'

1

!

!

Page 45

The generated cause-consequence diagram is turned into a plot
by the plotting commands CDPLCT or CDSUPER_PLOT:

What next: CDSUPER_PLO7"

-RIKKE -
Cause-Consequence-Diagram Plotter [V2C]
Model name: LDDRUM

-RIKKE-

CCD & Fault-tree plot [V3B]
Plot name: LDDRUM
BLOAD
BSUCC
LVLASS
BALAKC
BSHOW
BMOVE

Size of plot: 5 » 13
DRAW
ADDTXT
FINISH

(D R SR fap VR WD WD (WD IND P IV tmp Pap 1 (WD Jup SP WP (WD pup VP

The text to the plot of the cause-consequence diagram is
turned into readable form by the command CDTEXT. The text is
stored in a file with extension *#.CDX. The text in numeric
form is found in the file with extensior *.CDN.

What next: CDTEXT

-RIKKE -
F-T or C-D Texter [V2B]
Model name: LDDRUM

enB sep teB tem TWR tem W@

Page 46

file with

a

in

stored

is

extension #*.CDR and can be shown on the screen by the command

The cause-consequence diagram
CDSHOW

CDSHOW

What next

LDDRUM

LDDRUM.CDR - SYSTEM

PILE:

1

LDDRUM PART:

SYSTEM

J===/\==-\

10

e A = e N Do et e A= O D
-— - -

-

et [e e D -
N N
- O] -
“ N
POk =~
N -
|
e
N

s = MNfle Oile: e e O e St = O -
L ~— - -—

St ERG et SRt Gee Gni Sm0 Bed Ges Gnt G20 Gni Gn) G5i el Gnl Gut Guo Gni GN) Gn) Gml @ue Gnt An) GnL Gnt G20 Gn) Smb SAmt Gnt G20 G0 Gnl @m0 G S 0

st @Gns @ub Gat GNL @B Gn4 Gub G2 GuL Gmd GRS Gne o G= Gee

Page 47

What next: TYPE LDDRUM.CDX
---------- File: LDDRUM.CDX =—-——=m——v

1 SEP2 :IN BECOMES HIT

3 SEP2 :TEMP BECOMES DISTHI 10 SECONDS APTER START
4 SEP2 :TX BECOMES DHT1 10 SECONDS AFTER START

7 SEP2 :IN IS NOT SHUTOFF 10 SECONDS AFTER START

5 SEP2 :0UT BECOMES DISTHIT 10 SECONDS AFTER START
11 RV3 :IN BECOMES DISTHIT 10 SECONDS AFTER START
12 RV3 :POS IS OPEN 10 SECONDS AFTER START

6 SEP2 :T BECOMES DISTHI 10 SECONDS AFTER START

13 RV3 :0UT BECOMES DISTHIT 10 SECONDS AFTER START
15 5 :IN BECOMES DISTHIT 10 SECONDS AFTER START

14 SEP2 :DRN BECOMES DISTHIT 10 SECONDS AFTER START
16 RV2 :IN BECOMES DISTHIT 10 SECONDS AFTER START
17 RV2 :POS IS OPEN 10 SECONDS AFTER START

18 RV2 :0UT BECOMES DISTHIT 10 SECONDS AFTER START
19 3 :IN BECOMES DISTHIT 10 SECONDS AFTER START

9 SEP2 :TEMP BECOMES HI 110 SECONDS AFTER START

21 SEP2 :SV IS NOT RELIEVED 110 SECONDS AFTER START
10 SEP2 :0UT BECOMES HIT 110 SECONDS AFTER START

24 RV3 :IN BECOMES HIT 110 SECONDS AFTER START

25 RV3 :POS IS OPEN 110 SECONDS AFTER START

23 SEP2 :P BECOMES OVERPRESS 110 SECONDS AFTER START
26 RV3 :0UT BECOMES HIT 110 SECONDS AFTER START

28 5 :IN BECOMES HIT 110 SECONDS AFTER START

27 SEP2 :DRUM BECOMES BURST 110 SECONDS AFTER START
22 SEP2 :T BECOMES HI 110 SECONDS AFTER START

29 SEP2 :DRN BECOMES HIT 110 SECONDS AFTER START

30 RV2 :IN BECOMES HIT 110 SECONDS AFTER START

%1 RV2 :POS IS OPEN 110 SECONDS AFTER START

32 RV2 :0UT BECOMES HIT 110 SECONDS AFTER START

33 3 :IN BECOMES HIT 110 SECONDS AFTER START

Page 48

3. HOW TO USE PAUNET.

The FAUNET ©program package calculates cutsets and
pathsets/tiesets of fault trees and Zurther allovws
availability and reliability calculations. It exists as a set
of FORTRAN programs which can be activated by issuing commands
to the RIKKE monitor. (Andrews (1983)).

For the most part the programs communicate by mezns of input
and output files in a standard 'Pault tree' format. The
programs have in some cases parameters, such as, for example
the 'name' of the system or fault tree under investigation, or
the program execution options. Such parameters are requested
by the programs in prompt-response form, unless the
information is already available to the system.

The usual progression of a fault tree analysis with PAUNET is
as follows.

(1) The fault tree description is written as a file on the
disk store in a relatively free format (see appendix C)
together with the primary event failure and repair data
(see appendix D). Instead of a fault tree a network can
be analysed (see appendix C). The fault tree generated

by RIKKE is converted to PAUNETs fixed format by the
command CONVERT.

(2) The fault tree is used as basis for calculation of
minimal cutsets by the command CUTSET or of mirimal
path/tiesets by the command TIESET.

(3) The generated cutsets or tiesets may now be used for
probability calculations using bounding techniques by the
command UNAVAILABILITY.

(4) In order to perform an exact probability calculation, the
cutsets or tiesets may be decomposed by issuing the
command DECOMPOSE, whereafter the 'UNAVATILABILITY
DECOMPOSED' command performs the probability calculation.

(5) The resulting modularized cut/tiesets can be corpletely
evaluated by the EVALUATE command, or they may be
converted into a pruned fault tree by the TREE command.

(6) The cutsets and tiesets can further on be grouped by the
command GROUPING. The grouped sets are stored in a file
with the extension *.CSG/*.TSG.

(7) Using a pruned fault tree generated from minimal cut/tie
sets as input for another tie/cutset calculation often
end up with a set, which is modularized to an even higher
degree; ending up with completely modularized minimal
cutsets or tiesets.

(8)

(9)

Page 49

The final cut/tiesets are found in a file on the disk,
from where they =sy be TYPES cor PRIRTed. The names of
the files consist of the systea name followed by an
extension classifying the actual set. AsS an example
LDPDRUM.CSR contains the resulting minimal cutsets for the
LDDRUNM systea, vhile LDDRUN.TSG contains the grouped
tiesets for the same system. The total set of file names
is listed in appendix A and C.

In general after issuing a cosmand that result in an
output on the terminal, a copy of the text will exist on
the disk with the file name *.LIS (* stand for the system
name). This file may be printed on the typewriter by the
PRINT command: e.g. PRINT LDDRUM.LIS.

Page 50
3.1 How to convert a fault tree into cutsets.

As an example of conversion of a fault tree into cutsets and

tiesets we use the fault tree of the LDDRUM model made in

section 2.4 and pruned in section 2.5 under the modelname
LD2047.

As mentioned in the start of this chapter the fault tree have
to be converted by the command CONVERT:

What next: CONVERT

- RIKKECYCK=>PFAUNEBT-
Converter Program [V1A]

Model name: Lb2047
Converting Pault-tree, cutsets or Evaluated cutsets: F

Converting System: LDDRUM

Loading events & gate-numbers

- last event = 244

Comparing events in LD2047.PTX

Converting tree

- dropped, trying *.PTN

Compar1ng events in LD2047.PTR
10 matching events

{e 1ED (ep ten TUR TED (W (WD FeD v em

Save conversion table

Converting tree

The fault tree text is stored in readable form in LD2047.PFTX
and in numeric code in LD2047.FTN.

The fault tree has now been converted into FAUNET form and can
be analysed by the command CUTSET:

What next: CUTSET

CUTSET or TIESET: CUTSET
CUTSET of: LD2047

New or Pruned [NEW]: NEW
SYSTEM: LDDRUM

Extract (Yes/No) [Y]: YES
Highest order wanted: 999
Top gate: 0

GATE: 1000 SELECTED AS TOP
FACTORIZE

FACTORIZE

FACTORIZE

EXTRACT [Y]

FACTORIZE

FACTORIZE

EXTRACT (Y]

Page 51

FACTORIZE
FACTORIZE
EXTRACT [Y]

LOAD LD2047
EVALUATE
MINIMIZE

OVERFLOW

FINISH LD2047
REDUCE
OUTPUT

RESULT OF LDDRUM

REDUCED CUTSETS:
1. SET OF ORDER 1

1 .

EVALUATED CUTSETS:
13. SETS OF ORDER 3
2. SET3 OF ORDER 4

15.

GB s te Vemp PN Ve Ve (ep ¢ep VS CwD WD ¢wD VAR 1SS wp D PN 1D P Sup D sy (D (WD g

The CUTSET command have default NEW fault tree and the answer
YES to the question 'extract ?'. If the fault tree is pruned
and no extract is wanted the command is CUTSET PRUNED NO.
Further on the highest order is default 999 and the top gate
0. If the tree should not be analysed using the first gate in
the file as top gate, then another gate number must be
assigned in the command.

If you use the command CONVERT again you can convert the

cutsets 1into readable text which is stored in a file with the
extension *.LIS:

What next: CONVERT

~-RIKKECK=>PFPAUNET -
Converter Program [V1A]

Model name: LD2047 ,
Converting Pault-tree, Cutsets or Evaluated cutsets: C

Converting modularized cutsets
Text loaded - last event/state = 238

-RIKKE/FAUNET-
Cutset Printer [V14A]

The cutset text is stored in: "LD2047.LIS"

CeB VD D VS SN S VD 4em) (N cwd TN Cwh Cwp Cmm VD cwp S

The content of the file LD2047.LIS is:

VDt rem sem

D D G TR YD SR D VD wp S VWD CWD VP pmp Smp CD C=D PR PED pap Vo) SR WD VD D D Smp T P VS smm

.-

st t=m o s ew

e S ch B b Sd e B teE oo

R T

.-

Page 52
What next: TYPE LD2047.LIS

File: LD2047.LIS
Minimal cutsets found in model:

LD2047 FROM LDDRM
Top event in SEP2 :DRUM BECOMES BURST
Complex Module 1 fails if:

1)Fault in RV :0UT DID NOT BECOME SHUTOFF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :0UT BECAME SCUM 21 SECONDS AGO

2)Fault in RV :0UT DID NOT BECOME SHUTOFF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :0UT BECAME DISTHISUPPC 30 SECONDS AGO
and in RV2:IN DID NOT BECOME COMPLOBACKPC 30 SECONDS AGO

3)PFault in 2 :WS
and in RV :0UT
and in SV2 :IN

BECAME BLOCKED 30 SECONDS AGO
DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

4)Pault in RV :0UT BECAME HISUPPC 30 SECONDS AGO

and in RV :0UT
and in SV2 :IN

and in RV :0UT
and in S8SV2 :IN

6)Fault in TRA2
and in RV :0UT
and in SV2 :IN

7)Fault in REG2
and in RV :0UT
and in SV2 :IN

8)Fault in REG?2
and in RV :0UT7T
and in SV2 :IN

DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

:WS BECAME LOINPUT 30 SECONDS AGO

DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

:WS BECAME FAILLO 30 SECONDS AGO

DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

:WSTATE BECAME FAILLO 30 SECONDS AGO

DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

:PWR BECAME FAILOFF 30 SECONDS AGO

DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

9)Pault in RV2 :WS BECAME BLOCKED 30 SECONDS AGO

and in RV :0UT
and in SV2 :IN

10)Pault in REG2 :

and in RV :0UT
and in SV2 :IN

DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

SET BECAME ERROR %0 SECONDS AGO
DID NOT BECOME SHUTOFF 20 SECONDS AGO
DID NOT BECOME RELIEVED 10 SECONDS AGO

S G PP T e T Yam D IS PP sy VP Cup D (U s PuP ISR PP (D ey (WD VNP WD ' sap twmp (NN SED VP S puy

Page 53

11)Pault in RV :0UT DID NOT BECOME SHUTOFF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV2 :IK BECAME DISTRIBACKPC 30 SECORDS AGO
and in RV :0UT DID NOT BECOME COMPLOSJPPC 30 SECONDS AGO

12)Fault in RV :0UT DID NOT BECOME SEITOFPF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECORDS AGO
and in RV2 :IN BECAME SHUTOFP 30 SECONDS AGO

13)Fault in RV :0UT DID NOT BECOME SHUTOFF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV2 :IN BECAME HIBACKPC 30 SECONDS AGO

14)Fault in RV :0UT DID NOT BECOME SHUTOPF 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONRDS AGO
and in RV :0UT BECAME DISTHIT 1110 SECONDS AGO

15)Fault in RV :0UT DID NOT BECOME SHUTOFP 20 SECONDS AGO
and in SV2 :IN DID NOT BECOME RELIEVED 10 SECONDS AGO
and in RV :0UT BECAME HIT 110 SECONDS AGO

Cutsets of 1. order:

1)Pault in module # 1

The tiesets are made by the command TIESET:

D B A D seh VD VD WD D Sl Gwmp R D D ol VR Vemp VWD WD LR D VD e twP S

What next: TIESET

CUTSET or TIESET: TIESET
TIESET of: LD2047

New or Pruned [NEW]: NEW
SYSTEM: LDDRUM

Extract (Yes/No) [Y]: YES
Highest order wanted: 999
Top gate: 0

GATE: 1000 SELECTED AS T0P
PACTORIZE

FACTORIZE

FACTORIZE

EXTRACT [Y]

PACTORIZE

FACTORIZE

EXTRACT (Y]

PACTORIZE

FACTORIZE

EXTRACT [Y]

LOAD LD2047
EVALUATE
MINIMIZE
OVERFLOW

Page 54

FINISH LD2047
REDUCE
OUTPUT

RESULT OF LDDRUM

REDUCED TIESETS:
1. SET OF ORDER 1

1.

EVALUATED TIESETS:
2. SETS OF ORDER 1
4. SETS OF ORDER 15

6.

G s Pl Ve TN Smm (D Ve Sed VD Sm P SD PR VAR Sn P S ap

As vell as with the CUTSET command you can define othe options
than the default.

Page 55

3.2 Analysis of cutsets by FAUNET.

Both the cutsets and the tiesets can be evaluated by the
command EVALUATE. The generated cutsets or tiesets are
expanded from the complex events to an expression in terms of
the original basic events. As an example we have have chosen

to evaluate the cutsets (which are default) of the
LDDRUM-model (LD2047).

What next: EVALUATE

Evaluate complex events in system: LD2047
From CUTSET or TIESET? CUTSET

RESULTING EVALUATED CUTSETS IN LDDRUM

13. CUTSETS OF 3. ORDER
2. CUTSETS OF 4. ORDER

15. CUTSETS IN TOTAL

rm S VD WD cwmp IS s S Ge@ CED S o=

The minimal cutsets or tiesets can be converted into a
modularised fault tree. By alternating between cutset and
tieset calculations on a tree, the tree can be reduced to 1its
smallest form. The command TREE works default on cutsets.

What next: TREE

Make a fault-tree from CUTSET or TIESET - [CUTSET]: CUTSET
CUTSET result of: LD2047

Grouped, Evaluated or Not (G/E/N) [N]? N

CONVERTING CUTSETS OF LDDRUM INTO A PRUNED TREE
PRUNED TREE MADE

VD YD CmE emm VS amp Y v s

Page 56
4. HOW TO CREATE OR UPDATE A LIBRARY.

A library useable for the RIKKE system contains both a graphic
and a generic library part.

The basic elements in a graphic library are component forms
ldentified by the generic type of the component as used
elsewhere in the RIKKE system. Each generic component type
may exist in several graphic forms. The actual form is
identified by the name (number) of this form.

The graphic libraries uses the extension #.DGL, where the
generic libraries uses the name #.GCL. A full list of the
available graphic libraries is therefore obtained in VAX or
PDP-11 monitor by asking for these extensions:

DIR *.DGL
12-sept-84
LOGIC .DGL 50 O7-Feb-82
FLOW .DGL 50 04-Nov-81
DEMO .DGL 60 22-Dec-81
HAZLB2.DGL 82 27-Jan-84

A D D tws Vel VD Vem Tww

This example shows 4 available graphic libraries named LOGIC,
DEMO, FLOW and HAZLB2.

The extersion *.DGL is an abreviation for Draft Graphic
Library, and the extension *.GCL is an abreviation for Generic
Component Library. A list of all extensions used can be found
in appendix A.

By typing DIR *.GCL (Generic Component Library) the computer
will show all available generic 1libraries and it will be
possible to see whether there is both a graphic and a generic
library.

The graphic libraries are maintained by the command: GRAPHIC
(programs GRALIB, GLEDIT and GILPLOT). The use of these
programs (command: GRAPHIC) is described in section 4.1.

One or more component forms may be extracted from a library or
may be created or modified interactively using the GLEDIT
program, and later used to update the same or amnnther library.
The extract has the file extension *.GML. A completely new
library may be created using these extracted forms.

It is possible to draw a set of (or all) graphic forms in a
library (command: GRAPHIC, subcommand: PLOT).

The description of handling the graphic and generic files are
split into two. Section 4.1 (with subsections) describe the
creation and handling of the graphic 1library, while section
4.2 (with subsections) take care of the generic library.

The existance of both a graphic and generic library does not
ensure compatibility. This phenomenon is described in section
4.3,

Page 57

4.1 How to create a graphic component.

The graphic library is called from the RIKKE mcnitor by the
command GRAPHIC as seen in the following example.

1

! What next: GRAPHIC
! RIKKE

! Graphic Librarian

! Graphic Library name: DEMO

' What now:

1

GRAPHIC is now ready for subcommands. The operator may at any
step enter a carriage return to force GRAPHIC to print a list
of all possible commands at any step.

The legal ansvers to the "What now:" query is shown in table
below:

Table 4.1 Subcommands in GRAPHIC.

Create - Create a new graphic library

from graphic forms.
Update - Update a graphic library

by replacing forms or adding new.
Make - Make new graphic form (calling GLEDIT).
EDit - Edit graphic forms écalling GLEDIT;.
Plot - Plot graphic forms (calling GLPLOT).
LISt -~ List all graphic forms in library.
EXtract - Extract graphic forms from library.
Delete - Delete graphic forms from library.
LIBrary - Define another library name.
Stop - Stop execution [return to RIKKE].

A command is activated by entering enough letters for a full
identification as indicated by the capitals in the commands
listed above. The rest of the word is optional (but it must

match). E.g. EX or EXTR or EXTRACT all activate the
extraction of forms.

In order to CREATE a new library or UPDATE an old one, we must
have separate forms either made by GLEDIT (command: MAKE) or
EXTRACTed from elsewhere. The PTLIB3 distribution contains a
set of forms for that library.

The commands EDIT, PLOT, EXTRACT or DELETE all ask for
identification of the individual components by their generic
type and graphic fornm.

The query "Generic type :" may be answered by the actual
generic type name ?max. 6 characters, letters or digits).
When a type name is entered, GRAPHIC will ask "Graphic Form:”.
Here the name of the form (max. 6 characters) should be
entered, or ALL to indicate all forms of this component. The
answer ALL to the query "Generic Type:" will select all

Page 58

components in all forms within the library, while the answer ?
will scan the 1library, and for each possible component and

form ask for acceptance or rejection of this particular
element.

The acceptance query looks like the following example:

Type: PUMP
Form: 1

TR T EY)

The response to this question should be Y or YES for accept, N
or NO for rejection or S (STOP) for rejection of this and all

remaining component forms. After extraction, the name of the
file containing the extract is shown on the terminal.

As an example of creating a new graphic form, we will follow
the creation of a tank step by step. From the initial sketch
(figure 4.1) we can see that we need to make lines, arcs and
circles to fullfill the graphic form. 1In addition we have to
specify the ports of the component.

ouUT

v

LEV

-——e

— -

~,

Figure 4.1 1Initial sketch of a tank.

The drafting is initiated by <the command MAKE. We are
prompted for the name of the graphic library file and then get
a drawing table on the screen. By the command ADD we get a
gleaming sight on the board and can start to draw.

What now: MAKE

RIKKE
Graphic component editor [ViC]
What now: MAKE

Graphic Library-file: TANK

GuD VD e YT cmm teE e S

Page 59

FPirst we point out the center of the picture and mark it with
a C (for center). All the possible markers can be shown on
the screen by typing a question mark.

The lines are made by positioning the cursor at the first end
of the and mark the point by P (for point out), positioning it
at the other end and type an L (for line).

The arcs at the end and top of the tank are made by pointing
out one of the ends of the arc and type P. Then pointing out
a point on the arc, type space, and positioning at the other
end of the arc and type A {for arc).

The circle are made by positioning the cursor on the periphery
of the circle and type a space. The cursor are moved to the
center of the circle, and we type an 0.

When the drawing is finished we need to add ports. Ve
position the cursor, where the first port should be and type a
number according to the orientation of the as you can see it
in figure 4.2. VWe are then prompted for the name of the port.

-

W

Pigure 4.2 Orientation of the ports.

When the drawing session is finished we type X to exit from
the drawing table. We save the graphic form by the command
SAVE and are prompted for the type and form of the component.

SAVE
Type: TANK
Form: 1

The position of the component name on the draft is pointed out
and confirmed by typing E. When the saving is finished we get
a nevw drawing table, but the drawing can be terminated by
typing X and END.

Page 60

4.1.1 How to ~dit a graphic component.

EDIT
Generic type: TFTANK
Graphic form: 1

TN EL EL L]

And ve see the existing graphic image of the component TFTANK
on the screen. We want to add some new ports to an existing
graphic form. Pirst we add a level sensor. The step size on
the component drawing is too big, and we want to make it
smaller. The standard step size is 10 and we change it to 2
by typing:

Grid/step size [10]: 2

(27}
3
s |
o

We then redraw the component with the smaller step size by
typing:

! SHOW

To add the level sensor we type:

! ADD

and we get a sight on the screen. The gate from the tank %o
the 1level sensor is marked by typing P. The length of the
gate is determined and the line is drawn by typing L. The
level sensor itself is drawn in a similar way. The port from
the level sensor is defined by the sight and the desired
orientation of the port is chosen by typing O, 1, 2 or 3
(according to the direction shown in figure 4.2).

Page

Table 4.2 Sub-subcommands in Graphic Editor.

61

Add
CEnter
ENd
ERase
EXit
FOrm
Grid
NAme
0K
Quit
REAd
REDraw
REMove
RESt
REWind
SAve
SCale
SHow
SKip
STep
TYpe

Enter interactive graphic vector mode.
Change center of figure.

Finish.

Erase area.

Finish - present figure not added.
Change name of form.

Specify grid (& step).

Change position of component name (type).
Accept this figure - take next.

Drop all.

Load next from input.

Repeat the figure as it will be stored.
Remove a port.

Accept this & rest of input.

Rewind input for repeated entrance.
Accept this figure - without taking another.
Change sealing of figure.

[=REDraw].

Drop this figure - take next.

Specify steps for addressable points.
Change figure type.

Page 62
The program answer:

-

! Portname: LEV
!

We have now made the desired change in the graphic component
and want to exit from the adding system. We type

Reading type: "FTTANK"” - Form: "1°
What now: STOP

'

! X

LU oK

! END

! RIKKE

! Graphic Component Editor

! What now: UPDATE
! RIKKE

! Graphic Librarian

! Graphic Library Name: PTLIB3
! Wwhat now: UPDATE
' Prom graphic file: PTTARK
!

'

'

Page 63
4.1.2 How to include a graphic component.

In order to make a newv graphic library or update an existing
with graphic components from other libraries, you use the
facilities EXTRACT and UPDATE. The first step is to enter the
graphic 1library froma vwhich you want to extract the graphic
component, and then use the command EXTRACT:

EXTRACTING: COLUMN

Component extracted [in COLUMN.GML]
Extract Component type: <CR>

?

! What next: GRAPHIC
!

! -RIKKE-

! Graphic Library Editor [ViA]

]

! Library name: PTLIB3
r

'

! What now: EXTRACT
'

! Extract Component type: COLUMN
! Extract Graphic form: 1

'

;

'

'

4

You have nowv extracted the graphic component COLUMN from
PTLIB3, and the informations are stored in a file named
COLUMN.GML. The next step in including the component to the
new 1library CHELIB is to change 1library and then use the
command UPDATE.

L

! What now: LIB

]

! Library name (PTLIB3): CHELIB
|]

! ¥What now: UPDATE
L]

! Input file type Lib, Gml or New [REW]: GML

!

! Read from file: COLUMN
1]

! Expanding Database

! READING TYPE: COLUMN - - - 1009 -~

' TYPE: COLUMN - INSERTED @ 58

! Read from file: {CR>

)

'

!

What now: STOP

Page 64

4.2 How to create a generic component.

In the RIKKE system you are able to make your own components,
and just as well as the program needs a graphic model of the
components, it needs a generic part, which tells what happens
when the conditions are changed.

The generic part consist of a definition of the ports of the
component, several small fault trees, a list of spontaneous
events and possible working states.

All the attributes in the generic component is listed in table
4-4-

To make a new component you need to define the ports and the

transfer functions. The variable list is generated
automatically, when you use new variables in the transfer
function, and it serves as a control 1list. The other

attributes are used when nessesary.

You call the generic library editor with the command EDIT:

-

What next: EDIT
-RIKKE-
Gereric Library Editor

Library name: CHELIB

XL KL T NY

The subcommands are shown in table 4.3%.

Table 4.3 Subcommands in EDIT of generic library.

——— — —— ——

EDitor - Call the interactive editor.
LISt - List content of library.
PRint - Print component{s) formatted.
Type - Type component(s) directly on console.
EXTract - Extract one or more components from library.
Update - Update a library by

replacing components or adding new.
INSert - Add new components to

library unless already existing.
REPlace - Replace old components in library by a new one.
PAck - Extract in packed form.
DELete -~ Delete components from library.
CHange - Change types of components in a library.
COPy ~ Copy one component changing its generic type.
WHAt - Tell about editors work-copy and free space.

ROom -~ Tell how much free space in database.
CLaim -~ Claim extra workspace in database.
LIBrary - Specify library.

CReate = Create 2 new library from source.
INItial - Create a new (empty) library.

Stop - Stop execution - back to monitor.

.t s D ———— T —— —— T S —— ——— A —— —_— — — ———— " —— - — - —— S ——— OO

Page 65

We now want to make an entirely new component. We use the

subcommand EDIT, which allows us to make the new components
interactively:

EDIT

(EDITOR) Make, Get, Copy, REStore,
List, What or Exit: MAKE
Make initial work copy af new generic type: VALVE

Initial (empty) work copy made -
ready to MOdify.

Editor is working on : VALVE in block: 25

(EDITOR) Make, Get, Copy, REStore, EDit,
REMove, List, What or EXit: EDIT
(COMP.) Attribute:

S tD B smp s S VWD Jwp W PP G VD Ve Ve D

We have now entered the editor, made a work copy for a
component called VALVE, and are ready to specify ports,
spontaneous events etc. All the possible attributes to a
component are shown by typing <CR>:

Table 4.4 Legal attributes of generic models.

VL - Variable list
PL - Port list

TF - Transfer functions (Mini-fault-trees)
NS - Normal states

IS - Initial states

WS - Working states

PS - Possible states

SE - Spontaneous events

ILF - Latent failures

We start to define the ports of the VALVE by typing PL. The
ports of the VALVE are named IN, OUT and POS:

Page 66

3: (POS (pOS))
(Attr: PL)-Add-Mod-Print-Last-What-End:

]

! (COMP.) Attribute: PL

]

! (Attr: PL)-Add-What-End: ADD

1 -

! Port: IN (IN)
]

-

! Port; ouT (OUT)
1

! -

! Port: POS (POS)
]

[-

! Port: <{CR>

]

! (Attr: PL)-Add-Mod-Print-Last-What-End: PRINT

! 1: §IN IN

! 2: (our our

!

!

!

!

In the paranthesis we have written the same names as the port
names. But if we want to give some of the ports other
variable names in the generic system and still have the
graphic name saved to fit with the graphic component, we write
the original name first and the variable name in the
paranthesis.

To return to the editor we write END and EDIT, and we are then
ready to create the transfer functions of the VALVE:

- Transfer Function - Cause =-
Event:

!

! END

1

! (EDITOR) SAve, SWap, EDit, REMove,

! List, What or EXit: EDIT

! (COMP.) Attribute: TP

)

! (Attr: TF)-Add-What-End: ADD

!

! =~ Transfer Function - Cause -

! Event: IN -> HIGHPRES
! Condition -

! State: ' POS IS OPEN
! State: {{CR>

! Delay: 0

! Effect -

! Event: 0UT -> HIGHPRES
! Event: {CR>

!

!

1

!

Page 67

As you can see the program first ask for a cause event, then
about which conditions must be fulfilled before the effect
event happens, and finally about the effect events. If <there
is no condition you just give a <CR>. The program also ask
for a time delay. You can define several condition states and
effect events. When you have finished defining all transfer
functions you type <CR>.

<CR>

(Attr: TF)-Add-Mod-Print-
Last-What-End: PRINT
1: ((IN -> HIGHPRES)((POS IS OPEN))

(0)((oUT -> HIGHPRES)))
(Attr: TF)-Add-Mod-Print-

Last-What~Enad: END
(EDITOR) SAve, SWap, EDit, REMove,

List, What or EXit:

P YD Gem VB e s VNS Gwm PO jew (e e wa

When we have finished making the generic model we save the
work-copy:

!

!

! SAVE
! Saving - 17 -

! Done

! (EDITOR) SAve, SWap, EDit, REMove,

! List, What or EXit: EXIT
! What now: STOP
)

The generic editor is always working on a work copy separate
from the copy of the component found in the library. This
means that it is necessary to save a work copy before the new
component (or new version) is active in the library. If the
editing is interrupted and the work copy is not saved, the
editor keeps the work copy.

When a work copy is saved, the former version is stored as

backup copy. The backup copy can be recovered by using the
command RESTORE in the editor.

Page 68

4.2.1 How to edit a generic component.

In the RIKKE program. you are able to modify an existing

component by a similar procedure as the one used in making new
components:

What next: EDIT
-RIKKE-

Generic Library Editor
Library name: CHELIB
What now: EDIT
(EDITOR) Make, Get, Copy, REStore, List,

What or Exit: GET
Get component type: VALVE

Copying Component
New Edition: 2

(EDITOR) Make, Get, Copy, REStore, List,

What or Exit: EDIT
(COMP.) Attribute: PL
(Attr: PL)-Add-Mod-Print-Last-What-End: PRINT
1: (IN (IN

2: (ouT (our))
3: (POS (pOS))

(Attr: PL)-Add-Mod-Print-Last-What-End:

- S e S T=m TS 4 tmm D Pt = ey T P W rveh D WD FuP Smm S cmm P o b em

=
(]

can now ADD ports, and we can MODIFY the existing portis:

MOD

(Modify: PL)-DElete-DUplicate-Replace-
Change~-Print-Pirst-Last-Next-etc.

f— e mm e twm s v—=

If we want to DELETE a port, we type DELETE and the number of
the port: :

DELETE 4
Do you really want to delete attribute
"PL" - element 4

? YES
Done

(Modify: PL)-DElete-DUplicate-Replace-
Change-Print-First-Last-Next-etc.

) N aah em e B ey G v =

Page 69

Another possibility is to REPLACE a port by a new port by the
command REPLACE. The same command is wused when you are
changing transfer functions:

(EDITOR) Make, Get, Copy, REStore, List,
What or Exit: EDIT
(COMP.) Attribute: mF

(Modify: TF)-DElete-DUplicate-Replace-~
Change-Print-First-Last-Next-etc.

: PRINT 3
3: ((IN -=> LOWTEMP)

((OUT ISNT COMPLOWTEMP)) (0)((OUT -> LOWTEMP)))

(Modify: TP)-DElete-DUplicate-Replace-
Change-Print-First-Last-Next-etc.
: REPLACE 3

Modifying element 3

Replace variable: {CR>
Replace value: LOWTEMP
by: HIGHTEMP
Replace value: . <CR>
Replacing O variable, and 1 value - ok ? YES

Copying 3 to 1

(Modify: TF)-DElete~DUplicate-Replace-
Change-Print-First-Last-Next-etc.

P D ¢ e temp S G s SR yewm A tAD YumE Sl D Sy (D Sk Vew) Py UMD SWp SmD ey WP SP IS P sy e

By using the other commands in the modify system you are able
to DELETE ports or transfer functions from the generic model,
DUPLICATE whole parts or REPLACE elements of the attributes.

Page 70

4.2.2 How to include a generic component.

When we make a new library, we may often wish to use olad
components from other libraries, and just change them or add a
few new components. By using the EDIT command we can EXTRACT
generic forms from existing libraries and INCLUDE them in new
libraries. The first step in this routine is to EXTRACT the
generic forms.

¥hat next: EDIT
-RIKKE-

Generic Library Editor

Library nanme: PTLIB3

¥hat now: EXTRACT

Extract Component type: VALVE

EXTRACTING: VALVE

Component extracted [in VALVE .CMP]

Extract Component type: {CR>
What now:

S s Ump Y VD YD e SN VD sy VD VD

INSERT the EXTRACTed component type, we change the 1library
the new home in EDIT and use the command INSEKT:

o+ 3
o O

1

! LIBRARY
I}

! Library name [FTLIB3]: CHELIB
! What now: INSERT
! Input file type Lib, Cmp or New [NEW]: CMP

! Read from file: VALVE
! Expanding Database

! READING TYPE: VALVE - - - 797 -

! TYPE: VALVE - INSERTED @ 8

! Read from file: <CR>

z What now: STOP

We have now EXTRACTed the component type VALVE and INCLUDEd it
in the new library.

Note that it is very important to ensure that the values used

for the different variables are compatible with the new
library.

Page 71

4.3 How to check a library.

In the RIKKE system a command named CHECK is found. This
command is wused for checking a 1library in respect to
compatibility between the graphic and generic forms. The
command checks that all ports on the graphic component, the
ones we use in drawing plant on screen, is defined in the
generic systen.

From the list of available libraries we decide «shich one +to
use, and start runaing the RIKKE system:

RIKKE?2

Welcome to RIKKE?

What next:

CHECK

RIKKE
LIBRARY CROSSCHECK [V1A]

VB VD S e s VD R IS cwD PP P swm rwS

! Library name:

!.b2;Now we print the chosen 1library name (without the
extension).

1 PTLIB3
'.b2;An example of a test responce is:

Generic type: DUMMY, has no graphic equivalence
Generic type: FLPFLP, has no graphic equivalence
Graphic type: AIRBRN, has no generic equivalence

Port mismatch in component: CHECKV - form: 1

Generic Graphic - ports without match:
"p " | "

n T " L "

np " | S "

The Libraries are incompatible

GWD s Tmm D Ve TR CwD TS CUE Cem VNE e CTW Ty O

The first message concerns a component called DUMMY. This
component has no graphic equivalence. Por a normal component
this would be a failure, but Dbecause DUMMY is a "dunmmy
component”"” for +the generic libraries, there is no need for a
graphic equivalence. The purpose of DUMMY is to serve as
starting point for new components.

Page 72

The next three messages is on specific components and
indicates that component FLPFLP and AIRBRN are unknown to the
generic and the graphic 1library respectively. Component
CHECKV can not be used because the ports does not match
between the generic and the graphic part of the 1library.
These components MUST NOT BE USED in any work including this
library before the incompatibilities are repaired.

A mismatch between ports in graphic and generic systems would
result in INCOMPATIBILITY between libraries. The reason for
incompatibility in the example above is that the component
CHEC§V does not have graphic ports with the names of "F", "7T"
and "P".

Page 73

5. COMMANDS IN RIKKE SYSTEM.

The most common RIKKE commands are

MODEL - define or change model name
WHAT - ask for current model

STOP - stop execution of RIKKE session
DRAPT - activate model drafting

MAKE - build up a plant model

FAULT - produce a fault tree

TEXT - add readable text to fault tree

FTPLOT - produce a plotting file / fault tree (A4 sheets)
PTSUPER - produce a plotting file / fault tree on one sheet
PLOT - send plotting file to actual plotter

VIEW - send plotting file to graphic display screen
FTSHOW - plot a fault tree on typewriter

cur - prune fault tree of unwanted event types

An information about all of the commands in the main RIKKE
system can be obtained by typing HELP, when you are in the
RIKKE monitor. At the following pages you have a short
description of these commands.

ANALYZE

The command is used to analyse a fault tree.
The syntax of the command is:

ANALYZE [ITEM,ELEMENT] <item> [MODEL] <model name)
CALL

The CALL command is used to call and execute a module in the
RIKKE package with a model name.
The syntax of the command is:

CALL [PROGRAM] <program name> [MODEL] <model name>
CCPLOT

The general plotter program used by both FTPLOT and CDPLOT.
The syntax of the command is:

CCPLOT [MODEL] <model name>
CCSUPER_PLOT

The general plotter program used by both FTSUPER_PLOT and
CDSUPER PILOT.

The syntax of the command is:
CCSUPER_PLOT [MODEL] <model name>
CDCOMBINE

Combines two cause-consequence diagrams.,
The syntax of the command is:

CDCOMBINE <new name> [MODEL,RO0T] <name of root>

Page T4

CDPLOT

Plot the generated cause-consequence diagram in A4 sheets.
The syntax of the command is:

CDPLOT [MODEL] <model name>
CDSHOW

Show the generated cause-—consequence diagram on the
typevwriter.
The syntax of the command is:

CDSHOW [MODEL] <model name>
CDSUPER_PLOT

Produce a plotting file for a cause-consequence ciagram on one
sheet (not broken in A4 sheets).
The syntax of the command is:

CDSUPER_PLOT [MODEL] <model name>
CDTEXT

Add readable text to cause-consequence diagrams.
The syntax of the command is:

CDTEXT [MODEL] <model name>
CHECK

Check the compatibility between the generic and +the graphic
part of a Library.

The syntax of the command is:

CHECK [LIBRARY] <library name>

The syntax of the command is:

CODE (WANT[COMMAND,KEYWORD]=ALL:A30,
ALLfALL]:KEYWORDs:A30,0N[0N]=TT,
WHAT=CODE:-,POR[FOR=FOR]:-)

COMBINE

General combinaticn program for both FTCOMBINE and CDCOMBINE.
The syntax of the command is:

COMBINE <new name> [MODEL,RO0T] <name of root>

Page 75

CONVERT

Converts a fault tree in RIKKE form to FAUNET fornm.
The syntax of the command is:

CONVERT <item> [MODEL] <model name>

legal items are: FT for fault tree
CS for cutsets
EV for evaluated cutsets

CONSEQUERCE

The consequence command is used to generate a
cause-consequence diagram.
The syntax of the command is:

CONSEQUERCE [COMPONENT] <component name> [EVENT] <event)
[MODEL] <model name>

CUT

The CUT command allows pruning of unwanted event types in the
fault trees Dbefore plotting. When the CUT command is given
the program asks which types of cutting are required. A
detailed description is found in section 2.5.

The syntax of the command is:

CUT [MODE] <mode number> [MODEL] <model name>

Give an axplanaision of the commands. The facility 1is
resetted by a carriage return.
The syntax of the command is:

DEBUG

Activate model drafting. Further descriptions of the
subcommands can be found in chapter 2 and in (Larsen, 1982).
The syntax of the command is:

DRAFT <type> [LIBRARY] <library name>
[MODEL] <model name>

Legal types are: OLD for old draftings
NEW for making new drafts.
CONTINUE for working on a draft data base.

EDIT

The EDIT command envokes the program GENLIB and permits
editing in the generic models from a given library.
The syntax of the command is:

EDIT [LIBRARY] <library name>

Page 76

The execute comeand permits execution of DAPHNE com=mand files.
A further description is found in section 2.6.
The syntax of the command is:

EXECUTE [PILE] <file name> [MODEL] <model name>
EXTRACT

Extract forms from a Library in a separate file.
The syntax of the command is:

EXTRACT [TYPE] <generic type> [LIBRARY] <library name>
PAULT

The command FAULT generates fault trees. "he command is
appended by the name of the component in which the event
happens, and the type of event.

The syntax of the command is:

PAULT [COMPONENT] <{componént name> [EVENT] <event>
[CPTION] <option type>

PIX

Repair an uncomplete fault tree. Legal ‘yres are:

for Break

for Continue

for max. Depth before break
for Bvent list

for Loop stop

tar None (default)

for Show (not on VAX)

for Time

HuACMOQW

The syntax of the command is:
PIX [MODEL] <model name>
FTCOMBINE

The PTCOMBIRE command is used to combine two fault trees.
The syntax of the command is:

PTCOMBINE [AS] <newv name> [MODEL,RO0T] <name of roots>
PTEDIT

The command PTEDIT permits editing of a fault tree. You can
cut out a piece or find certain events in the tree.
The syntax of the command is:

PTEDIT A[AS],w[D0],kK[ON],[MODEL] <model name>

Page 77

PTPLOT

Produce a plcoctting file for a fault iree on A4 she=ts.
The syntax of the command is:

PTPLOT [MODEL] <model name>

Show the generated fault tree on the typewriter.
The syntax of the command is:

TSHOW {MODEL] <(model name>
PTSUPER_PLOT

Produce a plotting file for a fault tree on one sheet (not
broken in A4 sheets).
The syntax of the command is:

PTSUPER_PLOT [MODEL] <model name>
PTTEXT

FPTTEXT changes the text form of a fault tree from numeric form
to text fornm.
The syntax of the command is:

PTTEXT [MODEL,IN] <(model name>
GRAPHIC

The GRAPHIC command permits graphic editing of graphic

libraries.
The syntax of the command is:

GRAPHIC [LIBRARY] <library name> [TYPE] <component name)
[MODEL] <(model name>

Legal component names are all components in 1library and the
type ALL which extracts all types.

HELLO displays the initial welcome screen.
The syntax of the command is:

HELLO
HELP

Gives information about which commands you can use, and what
syntax they use.
The syntax of the command is:

HELP [ABOUT] <name of command>

Page 78

HOPSA

HOPSA is short for Human Operator Safety Analysis and permits
an analysis of start up/shut down procedures or other

procedures. This program has not been released.
The syntax of the command is:

HOPSA
LIBRARY

Defines or redefines the name of the Library you want to work
with or on.

The syntax of the command is:
LIBRARY [LIBRARY] <library name> [TYPE] <generic type>
LIST

The LIST command enables you to see one or more files on the
screen.

The syntax of the command is:
1LIST [FILE,FILES] <file name(s)>
MAKE

The MAKE command initiates the building of a plant model.
The syntax of the command is:

MAKE [MODEL] <model name>

MINI_FAULT TREE PLOT

Plots the mini fault trees of a component.
The syntax of the command is:

MINI_FAULT_TREE_PLOT [LIBRARY] <library name>
TCOMPONENT, COMPONENTS] <component name(s)>

Defines or redefines the model you are working with.
The syntax of the command is:

MODEL [NAME] <name of model>
NUMBER
Renumber the events in a fault tree.

The syntax of the command is:

NUMBER [MODEL] <model name>

Page 79

PLOT

Send plotting file to the plotter.
The syntax of the command is:

PLOT [MODEL] <model named>

The PRINT command activates typing of one file or more on a
printer.
The syntax of the command is:

PRINT [FILE,PILES] <file name(s)>
RT11

Returns you to the PDP-11 monitor for one command.

Same command as the the VMS command, but only used on the
PDP-11.

RUN

Call a seperate program for execution, return to RIKKE on
exit.
The syntax of the command is:

RUN [PROGRAM] <program name>
STOP

The STOP command stops the execution of the RIKKE program.

string handling

The string manipulating commands may be used in connection
with more generel command files. They were primarily
developed in connection with the DAPHNE code facility (not
released with RIKKE-II).

APPEND

The function APPEND is a string manipulator which appends the
argument of the function to the storage called RESULT. A
space will be imbedded.

The syntax of the comrand is:
FUNCTION APPEND [NEW]
CONCAT

Store an argument in the RESULT buffer. If CONCAT have two
arguments they will be combined.
The syntax of the command ig:

FUNCTION CONCAT [WITH]

Page 80

FIRST PART

Scan the input argument (default RESULT) for the first space
and the first "half" is stored as new result.

The syntax of the command is:
FUNCTION FIRST PART [oF]
PUSH

Save the argument in the result buffer (POP).
The syntax of the command is:

PUSH
PROMPT

Accept one argument. The value is used as prompt for a query
on the screen. An answer is expected from the keyboard. The
answer is stored in the result buffer.

The syntax of the command is:

FUNCTION PROMPT

—— s oy

Suppress "unnescessary" output prompts, where the value is
already supplied, for a limited number of steps.
The syntax of the command is:

QUIET <integer>
REST

Act like FIRSTPART except that the final result is the second
"half" of the text.
The syntax of the command is:

FUNCTION REST

Type the argument text on the console.
The syntax of the command is:

WRITE
SUPER_PLOT

Plots the model in one large drawing.
The syntax of the command is:

SUPER_PLOT [MODEL] <model name>

Page B1

Gives the information about the syntax of a given command.
The syntax of the command is:

SYNTAX [FOR] <name of command>

Transform fault tree text from numeric to readable form, and
add it to the fault tree or cause-consequence diagram.
The syntax of the command is:

TEXT [MODEL] <model name>
TYPE

Types a file on the screen.
The syntax of the command is:

TYPE [PILE,PILES] <file name(s)>
UPDATE

Update a Library by replacing forms or adding new.
The syntax of the command is:

UPDATE [LIBRARY] <library name> [TYPE] <generic type>
VIEW

Send plotting file to graphic display screen.
The syntax of the command is:

VIEW [MODEL] <model name)
WHAT

Ask for the name and information about the current model.

VMS

Permits one command to be executed in the monitor on the VAX
computer (VMS). When this command has been executed you are
returned to the RIKKE session in hand.

Page 82

6. HOW TO GET HELP.

In the RIKKE Monitor the command HELP produces the following
information:

! The most common RIKKE commands are

! MODEL - define or change model name

! WHAT - ask for current model

' STOP - stop execution of RIKKE session

| B e et > S . 0 " e o . e o o . e e
DRAFT - activate model drafting
MAKE - build up a plant model
FAULT - produce a fault tree
TEXT - add readable text to fault tree
FTPLOT - produce a plotting file / fault tree (A4 sheets)
FTSUPER - produce a plotting file / fault tree on one sheet
PLOT ~ send plctting file to actual plotter
VIEW - send plotting file to graphic display screen
FTSHOW -~ plot a fault tree on typewriter
cur - prune fault tree of unwanted event types
DIAGRAM - create or modify Block Diagram

Information avail ible:

ANALYZE CALL CDPLOT CCSUPER_PILOT
CDCOMBINE CDPLOT CDSHOW CDSUPER PLOT
CDTEX"” CHECK CODE COMBINE CONVERT
CONSEQUENCE cuT DRAFT EDIT
EXECUTE EXTRACT FAULT FIX FTCOMBINE
FTEDIT FTPLOT FTSHOW FTSUPER_PLOT
FPTTEXT GRAPHIC HELLO HELP HOPSA
LIBRARY LIST MAKE MINI FAULT TREE PLOT
MODEL NUMBER PLOT PRINT RUN ~
STOP string handling SUPER PILOT
SYNTAX TEXT TYPE UPDATE VIEW
WHAT VMS

Topic:

N AR B Y YD B 4B Sm =D Puh Tewwy WD GUD YD VD ¢ Cm S T V4m D (=P = Jmy S W R S0 sep

You can type the command, you wish to know more about, and the
HELP facility answer:

Page 83

DRAFT

Activate model drafting.

A complete description of the
subcommands can be found in:
GRACE USER MANUAL (RIS0-M-2343)
Call GRACE

Syntax for the command:

DRAFT <type> [LIBRARY] <(library name>
[MODEL] <model name>

Legal types are: OLD for o0ld draftings
NEW for making new drafts.

CONTINUE for working on a draft data base.

Additional information available:

!

]

]

1

1

!

1

]

[}

]

1

t

!

!

1

)

!

]

!

1

! Parameters Qualifiers
' /ALL

! /ALTER

! /COMPONENT
! /DRAW

! /DUPLICATE
! /ERASE

! /PIND

! /GRID

1 /IN

! /LIBRARY

' /LINK

! /MOVE
' /ouUT
! /QUIT
! /REDRAW
! /RELINK
! /SAVE
! /SETUP
! /SHIPFT
! /STOP
' /TEXT
' JUNLINK
! /WINDOW
!

!

]

DRAFT Subtopic:

If you want to know about one of the subtopics, you type the
name. If you don't, you just press the carriage return, and
the HELP system returns to the maingroup of topics. If you
don't want to know anything further, you press the carriage
return until the RIKKE monitor answers "What next”.

In all other parts of the RIKKE system a question mark or a
carriage return will produce a list of information about the
available commands and their use.

It is the intention that the RIKKE system should be a self

teaching system. The program gives prompts indicating when it
needs cantral ipad . , ,

Page 84

input required. 1In the case where prompts are uninformative,
such as the prompt "What next:", pressing the return key will
result in a 1listing of the possible commands which can be
given. When in the RIKKE monitor, typing HELP results in a
listing of the available commands for users to learn to use
the RIKKE system with no help at all but the help provided by
the computer itself.

In general, if in doubt, press the carriage return key. This
will either +take you back to an earlier stage of command
input, or will produce some comment intended to help you out
of the difficulties.

Page 85
7. THE LIBRARIES.

Fach library consists of a number of components with a generic
and a graphic equivalence. Tn a library we have certain rules
for the levels (or values) of the variables and certain
specified names of the failure modes of the components. This
is to certify that a level of a variable in one component can

be recogniced in the other components and that the failure
modes are understood.

The libraries FTLIB3 and HAZLB2 do not have the same sets of
levels and failure modes. This means that a component in one
library 4o not match the components in the other library. In
the following sections (7.1 and 7.2) we will describe the
libraries and give an example of a component in each 1library
so the difference may be seen more clearly.

7.1 PFTLIB3.

In the library PTLIB3 a range of

Tatle 7.1 Components in PFTLIB3.

Page 86

63 components was made:

Component: Used for: Ports:

ACTUAT Actuater pos, in

AIRREG Airregulator in, out, air, set

AND And gate in1, in2, out

CCONT Normaly closed contact in, out, x

CHECKV Check valve in, out

COLUMN Column ¢, p, £, ref, in, out

CONDEN Condenser drn, int, in2,
out!, out2

CTANK Tank lev, of, in, out

CVALVE Checkvalve in, out

DELAY Time delay in, out

DIV Divider in, outl, cut2

DIVVLYV Divider valve pos, in, outl, out2

DRAIN Drain in

DWNCMR Revers riser in, out

EVAP Evaporator py, ty, lev, heat,
in, out

EVAPD Evaporator Yy, ty, lev, heat,
drn, in, out

FLPFLP Flip flop s, r, 4, nq

FORGAC pos, in

FURN Furnace air, monito, pilot,
in1, in2, out1, out?2

HEATER Heater heat, in, out

HEX Heat exchanger in1, in2, outt, out2

HwW pos

INVZIRT Inverter in, out

KODRUM Knockout drum press, sv, lev, drn,
in, out

LEVSNS Level sensor lev, out

LIQFRN Liquid furner int, in2, in3, in4, ins5,
in6, in7, in8, in, out

LOAD Load in, out

MANU

MIX Mixer int, in2, out

MIXVLV Mixer valve pos, int, in2, out

NCT Not gate in, out

NOZZLE Nozzle in, out

NREAC p, in

OCONT Normaly open contact in, out, x

OFTANK Over flow tank lev, dr, of, in, out

OR Or gate int, in2, out

PIPE Pipe c, p. £, t, in, out

PSH Pressure sensor high in, out

PSL Pressure ~ansor low in, out

PSN in, out

PUMP Pump pwr, in, out

PUSHER Push contact pos, in, out

PV Pressure vessel p, sv, in, out

PWRSUP Power supply out

REG Regulator in, out

REGVLV
RISER

SBYPMP
SEPARA

SH
SIGDIV
SL
SPLIT
STRAP
SUP
SUPTNK
Sv
TANK
TFTANK
TRANSA
TTTRBIN
VALVE
XLI

Regulation valve
Riser

Standby pump
Separator

Sensor high

Signal divider
Sensor low

Splits flow into two

Supply

Supply tank
Safety valve
Tank

Transfer tank
Transformer
Turbine

Valve

Page 87

pos, in, out
in, out
pwr, in, out
press, sv, lev,
drn, in, out
in, out
in, out1, out2
in, out
in, outl, out2
in, out, drn
out
lev, of, dr, in, out
in, out
lev, in, out
lev, dr, of, in, out
in, out
pwr, in, out
pos, in, out
in, out

V*L 8and1g

*¢HITId ul sjusucdmoo orydeas

GRAPHIC FORMS IN LIBRARY: FTLIBS3

D

[

AIRREG AND CCONT CHECKYV {
T1 2
pure ,"E /_DF
INg T JU' i
g%é)
| DUT1 i DRN
A e
CONDEN CONDEN 2 CONDEN CTANK 1

CVALVE

DELAY

D1V

DIV

DIVVLY

.
1T
uEz?Egﬁmum
N

88 aded

Page 89

) AN | 1 "B Xx¥ | & x| 2 X3
N
4
. 233
o = .=
N . INg
2und
) " XM | 4 ¥aLvaM ' avewod | dddd
Zl |« I
hﬁkw” AMWHV
N
)
2 NIvaa | o NIVHO

+

€9ITTLd AJVALIT NI SWA04d JIHJVA9

Graphic components in FTLIB3 continued.

Figure 7.1

Page 90

3] 5
> - -—
2
™
o
| o]
- yA
- > !
- L m
>
(0 4 R ~ -
nAN =
f0d)
g : g -l
yd
-—s
»n z = m
T - x
0
o - - -
e z
O
| o]
T 2
AR L
<
o
1) m N ¢
& z

ol

Figure 7.1 Graphic components in FPLIB3 continued.

Page 91

m

0, D* h 1Y

- ; L
) . ;
m - ' o
m :

=IO

m 4 z m
_.Or - - -
mw mllHthlﬂM M* \W
5 ; i -

!

Figure 7.1 Graphic components in PTLIB? continued.

PIPE
PP
REQVLY

GRAPHIC FORMS IN LIBRARY: FTLIB3

L*L 8andry

31601V 1

‘ponuUT4U0D ¢ITld ul sjuaurdwoo oyydeds

& plr | e

TURBIN | 1 VALVE 1 XLINK 1

TRANSA

26 28wy

Page 93

The discretisation levels for disturbances used in the PFTLIB3
construction process are based on the following:

Table 7.2 Discrete levels in PFTLIB3.

VHI Very high - so high that no compensation

is possible, e.g., VHIP

very high pressure.

HI So high that the disturbance can only be
compensated by shutdown.

DISTHI High enough to cause an accident, not so
high that a compensation is impossible.

DISTLO
Defined analogously.

LO

ZERO Disturbances resultiig in valves
indistinguishable from zero.

REV Reversal of flow.

Corresponding failure modes that can be distinguished in flow

system is:

Table 7.3 Pailure modes in PFTLIB3.

BLOCKED causing zero flow.
BURST causing zero pressure.
LEAK causing low.

SMALL LEAK causing DISTLO pressure.
PARTIALLY

SMALL BLOCKAGE
LOW RESISTANCE

SLIGHTLY LOW
RESISTANCE

NO RESISTANCE

- ———— — — P Y - A . - D D T T — - -

Page 94
T.1.1 Example of a component in FTLIB3.

RIKKE - Library: FTLIB3

Generic Component: REGVLV
19-Sep-84 11:07:25

Attribute: VL - Variable List

(IN PV)
(REG FV)
(ouT FV)
)
)

(

(

(F FV)
(POS FV)
(VALVE PV)

Attribute: PL - Port List

(Pos (P0S))
(our (oUT))

)
IN (IN))
Attribute: TF - Transfer Functions (Mini-fault-trees)

(IN -> HSPR)((POS IS OPEN))(0)((OUT -> HSPR)(OUT -> HSPC)))
OUT -> HBPR)((POS IS OPEN))(0)((IN -> HBPR)(IN -> HBPC)))
IN -> HSPR) TRUE (O)((IIN -> HP)))
IN -> HSPR)((POS IS OPEN)(OUT IS R)
OUT -> HBPR) TRUE (0)((IOUT -> HP))
OUT -> HBPR)((POS IS OPEN)(IN IS R))(O)((IIN -> HP)))

i

((Y(0)((1I0UT -> HP)))

| |

((IN -> HSPR)((OUT ISNT BLOCKED)(POS ISNT FAILCLOSED))(0)

((FP => HF))g

((ouT -> HBPR) TRUE (0)((F -> LF)))
((IN -=> COMPLOSUPPR)((PCS IS OPEN))(0)((0OUT -> COMPLOSUPPR)
(our -> coanosuppcg))
((oUT -> COMPLOBACKPR)((POS IS OPEN))(0)((IN -> COMPLOBACKPR)
(IN -> COMPLOBACKPC)))

$§IN => COMPLOSUPPR; TRUE (0)((IIN -> COMPLOP)
((

((

((

((

))
IN -> COMPLOSUPPR)((POS IS OPEN)(OUT IS R))(O)
((I0UT -> COMPLOP)))

OP)))
OUT -> COMPLOBACKPR)((POS IS OPEN)(IN IS R))(0)
((IIN -> COMPLOP)))
OUT -> COMPLOBACKPR) TRUE (0)((IOUT -> COMPHIFLO)))
IN -> COMPHISUPPR)((POS IS OPEN))(O)((OUT -> COMPHISUPPR)

(OUT -> COMPHISUPPC)))

OUT -> COMPHIBACKPR)((POS IS OPEN))(0)((IN -> COMPHIBACKPR)
(IN -> COMPHIBACKPC)))

OUT -> COMPLOBACKPR) TRUE (O0)((IOUT -> conp%

IN -> COMPHISUPPR) TRUE (0)((IIN -> COMPHIP)))

IN => COMPHISUPPRg((POS IS OPEN)(OUT IS R))(0)
((ToUT -> COMPHIP)))

OUT -> COMPHIBACKPR) TRUE (0)((IOUT -> COMPHIP)))

Page 95

((OUT -> COMPHIBACKPR)((POS IS OPEN)(IN IS R))(0)
((IIN -> COMPHIP)))
E OUT -> COMPHIBRACKPR) TRUE (0)((IOGT -> COMPLOFLO)))
IN -> DISTHISUPPR)((POS ISNT COMPLO))(0)((0UT -> DISTHISUPPR)
(oUT -> DISTHISUPPC)))
((QUT -> DISTHIBACKPR)((POS ISNT COMPHI))(O)((IN -> DISTHIBACKPR)
(IN -> DISTHIBACKPC)))
((IN => DISTHISUPPR) TRUE (O)((IIN -> DISTHIP)))
((IN => DISTHISUPPR)((POS ISNT COMPLO)(OUT IS R)
(OUT ISNT COMPLOBACKPR))(0){(IOUT -> DISTHIP)))
((ouT <> DISTHIBACKPR) TRUE (0)((IOUT -> DISTHIP)))
((OUT ~> DISTHIBACKPR)((POS ISNT COMPHI)(IN IS R))(0)
((IIN -> DISTHIP)))
((IN -> DISTHISUPPR)((OUT ISNT SHUTOFF)(POS ISNT COMPLO)
(OUT ISNT COMPHIBACKPR))(O)((IOUT -> DISTHIFLO)))
((OUT -> DISTHIBACKPR)((POS ISNT COMPHI)(IN ISNT COMPHISUPPR))(0)
((I0UT -> DISTLOFLO)))
((IN -> DISTLOSUPPR)((POS ISNT COMPHI))(0)((OUT -> DISTLOSUPPR)
(oUT -> DISTLOSUPPC)))
((OUT -> DISTLOBACKPR)((POS ISNT COMPLO))(0)((IN -> DISTLOBACKPR)
(IN -> DISTLOBACKPC)))
((IN -> DISTLOSUPPR) TRUE (O)((IIN -> DISTLOP)))
((IN -> DISTLOSUPPR)((POS ISNT COMPHI)(OUT IS R)
(OUT ISNT COHPHIBACKPR))(O)(SIOUT > DISTLOP));
((OUT -> DISTLOBACKPR) TRUE (O)((IOUT -> DISTLOP)))
((ouT -> DISTLOBACKPR)((POS ISNT COMPLO)(IN IS R)
(IN ISNT COMPHISUPPR))(0)((IIN -> DISTLOP)))
((IN -> DISTLOSUPPR)((OUT ISNT COMPLOBACKPR)(POS ISNT COMPHI))(0)
((I0UT -> DISTLOFLO)))
((our -> DISTLOBACKPR;((POS ISNT DISTLO)(IN ISNT COMPLOSUPPR))(0)
((I0UT -> DISTHIFLO)))
((IN => LOSUPPR) TRUE (O)((OUT -> LOSUPPR)(OUT -> LOSUPPC)))
((ouT -> LOBACKPR;((POS IS OPEN))(0)((IN -> LOBACKPR)
(IN -> LOBACKPC)))
((IN -> LOSUPPR) TRUE (O)((IIN -> LOP)))
ggln -> LOSUPPR)(%OUT 1S Rg)go)((louw -> LOP)))
OUT -> LOBACKPR) TRUE (0)((IOUT -> LOP)))
((OUT -> LOBACKPR)((POS IS OPEN)(IN IS R))(0)((IIN -> LOP)))
éEIN ~> LOSUPPR) TRUE (O)((IOUT -> LOFLO)))
OUT -> LOBACKPR)((IN ISNT SHUTOFF)(POS ISNT CLOSED))(0)
((I0UT -> HIFLO)))
((IN => HISUPPR)((POS IS OPEN))(O)((OUT -> HISUPPR)
(OUT -> HISUPPC)))
((OoUT -> HIBACKPR)((P0OS IS OPEN))(O)((IN -> HIBACKPR)
(IN ~> HIBACKPC);)
((Ws => R) TRUE (O)((IN -> R)(OUT => R)))
((WwS => BURST) TRUE (O)((IN -> c)(0UT -> C)))
EIN => HISUPPR; TRUE (O)((IIN -> HIP))g
IN -> HISUPPR)((POS IS OPEN)(OUT IS R))(0)((IOUT -> HIP)))
(OUT -> HIBACKPR) TRUE (0)((IOUT -> HIP)))
éOUT -> HIBACKPR)((POS IS OPEN)(IN IS R))(0)((IIN -> HIP)))
IN -> HISUPPR)((OUT ISNT SHUTOFF)(POS IS OPEN))(0)
((IoUT -> HIFLO)))
§ouw -> HIBACKPR) TRUE EO)((IOUT ~-> LOFLO)))
IN -> NOSUPP) TRUE (O)((IIN -> X)))
(IIN => X)((OUT IS NOBACKPR))(0)((IOUT -> NOP)))
(OUT -> NOBACKP) TRUE (O)é(IOUT -> X))
(WS -=> BLOCKED) TRUE (O)((IIN -> X)(IOUT -> X)))
(IN => NOSUPP)((I0UT IS X))(O)((IIN -> NOP)))
§IN -> ATM) TRUE (O)S§IIN -> NOP))
OUT -> ATM) TRUE (0)((IOUT -> NOP)))
(WS => BLOCKED) TRUE (O)((IN -> NOBACKP)(IN -> NOBACKPR)

5
(
é
§
E
5
5
(

Page 96

(OUT -> NOSUPP)(OUT -> NOSUPPR)))
((POS -> PAILCLOSED) TRUE (O)((IN -> NOBACKP)(IN -> NOBACKPR)
(OUT -> NOSUPP)(OUT -> NOSUPPR)))
((WS -> BLOCKED) TRUE (0)((IIN -> NOFLO)(IOUT -> NOFLO)))
((POS -> PAILCLOSED) TRUE (O)((IIN -> NOFLO)(IOUT -> NOFLO)))
((IN -> NOSUPFLO)((OUT IS NOBACKFLO))(0)((IIN -> NOFLO)
(I0UT -> NOFLO)))
((IN -> NOSUPP)((OUT IS BACKPLO)(POS IS OPEN))(0)((IIN -> REVFLO)
(IOUT -> REVFLO)))
((oUT -> BACKFLO)((POS IS OPEN))(0)((IN -> BACKFLO)))
((WS -=> BURST) TRUE (O)((IN -> NOBACKPR)(IN -> ATM)(IIN -> KOP)
(I0UT -> NOP)(OUT -> ATM)(OUT -> KOSUPPR)))
((IN -> NOSUPPR) TRUE (0)((OUT -> ROSUPP)(OUT -> EOSUPPR)))
(oUT -> NOBACKPR) TRUE (O)((IN -> NOBACKPR)(iN -> ROBACKP)))
(WS -> BLOCKED) TRUE (O)((IN -> BLOCKED)(OUT -> BLOCKED)))
(IN -> BLOCKED) TRUE (0)((OUT -> BLOCKED)))
(our ~-> BLOCKED) TRUE (0)((IN -> BLOCKED)))
§OUT -> BACKFLO)((POS IS OPEN))(0)((IN -> BACKFLO)))
IN -> SUP)((POS IS OPEN))(0)((OUT -> SUP)))
(POS -> PAILCLOSED) TRUE (O0)((IN -> NOTATM)(OUT -> NOTATM)))
(IN -> NOTATM) TRUE (O)((OUT -> NOTATM)))
(OUT -> NOTATM) TRUE (O)((IN -> NCTATM)))
(OUT -> NOBACKFLO) TRUE (O)((IN -> NOBACKFL0)))
§IN -> NOSUPFLO) TRUE §o)((oum -> NOSUPFLO)))
WS -> BURST) TRUE (0)((OUT -> NOSUPFLO)(IN -> NOBACKFLO)))
(IN -> NOSUPFLOTR) TRUE (0)((0UT -> NOSUPFLOT)
(our -> NOSUPFLOTR%)
(OUT -> NOBACKFLOTR) TRUE (O0)((IN -> NOBACKFLOT)
(IN -> NOBACKFLOTR)))
§us -> BURST) TRUE (O)((IN -> NOBACKFLOTR)(OUT -> NOSUPFLOTR)))
POS -> PFAILCLOSED) TRUE (O)((IN -> BLOCKED)(OUT -> BLOCKED)))
(IN -> ON)((POS IS OPENg(VALVE 1S NOTBLOCKED)
(VALVE 1S NOTBURSTg)(O ((OUT -> ON)))
(IN -> OFF) TRUE (0)((OUT -> OFF)))
(IN -> LIQUID)((POS IS OPEN))(0)((0oUT -> LIQUID)))
§ -> GAS)((POS IS OPEN))(0)((OUT -> GAS)))
-> CONTAMINATED)((POS IS OPEN))(O)((OUT -> CONTAMINATED)))
(IN -=> ScUM)((POS IS OPEN))(O)((OUT -> SCUM))})
§ -> HIT)((PQOS 1S OPEN))(O)(§OUT ~-> HIT)))
-> DISTHIT)((POS IS OPEN))(O)((OUT -> DISTHIT)))
(IN -> DISTLOT)((POS IS OPEN))(0)((OUT -> DISTLOT)))
2 -> LOT)((POS IS OPEN))(0)({OUT -> 1LOT)))
~> COMPHIT)((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE 1S NOTBURST))(0)((OUT -> COMPHIT)))
(IN -> COMPLOT)((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE IS NOTBURST))(0)((OUT -> COMPLOT)))
(IN -> HICONC)((POS IS OPEN))(0)((OUT -> HICONC)))
g => DISTHICON03§§POS 13 OPEN)3(0)§§OUT -> DISTHICONC)))
(0)}((ouT -> DISTLOCONC)))
(IN -> LOCONC)((POS IS OPEN))(O)é(OUT -> LOCOKC)))
(IN -> COMPHICONC)((POS IS OPEN)(VALVE IS NOTBURST)
(VALVE IS NOTBLOCKED))(0)((OUT -, COMPHICONC)))
(IN -> COMPLOCONC) ((POS IS OPEN)(VALVE IS NOTBLOCKED)
(VALVE IS NOTBURST);§)((OUT -> COMPLOCORC)))
(IN -> SUBST1PRESENT)((POS IS OPEN))(0)((OUT -> SUBST1PRESENT)))
-> SUBST1HI){(POS IS OPEN))(0)((OUT ~> SUBSTIHI)))
§ -> SUBST1LO)§(POS 1S opzn)gg
g PEN
(

-> DISTLOCONC) ((POS IS OPEN)

(our -> SUBST1LO)))
~> SUBST2HI)((POS IS OPEN)
IN -> SUBST2PRESENT)((POS IS O

- %UBSTZLO%%&POS IS OPEN))
IOUT -> REVFLO){(0UT IS HOT);g
1

OUT -> REVFLO)((OUT IS COLD

) (

0)((0OUT -> SUBST2HI)))
EN))(0)((OUT -> SUBST2PRESENT)))

)§(oum -> SUBST2LO)))

g({xn ~> HIT)(IN -> HOT)))

(
(
(
(
é
(
(
(
(
$
(
(
é
(
(
(
é
(
é
((1
é
(
(
2
(
(
(
(
((1
(
((1
|
(IIN -> LOT)(IN -> COLD)))

(0
0)
(0

Page 97

((IOUT -> REVFLO)((OU™ IS SUBST1PRESENT))(0)((IN -> SUBST1PRESENT)

(IIN -> SUBST1PRESENT)))

((IOUT -> REVPLO)((OUT IS SUBST2PRESENT))(O0)((IN -> SUBST2PRESENT)

(IIN -> SUBST2PRESENT)))

((1I0UT -> REVFLO)((oUT TS LIQUID))(0)((IN -> LIQUID)

(1IN -> LIQUID)))

((IOUT -> REVFLO)((0UT IS GAS))(0)((IN -> GAS)(IIN -> GAS)))
((zcur -> REVFLO)((oUT IS DIRTY))(O)((IN -> DIRTY)(IIN -> DIRTY)))
((I0UT -> REVPLO)((OUT IS GRITTY))(O)((IN -> GRITTY)

(IIN -> GRITTY)))

((I0UT -> REVFLO)((OUT IS CONTAMINATED))(O)((IN -> CONTAMINATED)

(IIN -> CONTAMINATED)))

((POS -> PAILHI)((IN ISNT SHUTOPFF))(0)((OUT -> HISUPPC)

(OUT -> HISUPPR)(OUT -> HISUPP)(IN -> LOBACKPC)(IN -> LOBACKPR)

(I -> LOBACKP)))

((POS -> PAILHI)((OUT IS R)(IN ISNT SHUTOFP))(0)((IOUT -> HIP)))
((POS -> PAILHI)((IN ISNT SHUTOPFF)(OUT ISNT SHYTOFF))(0)

((IIN -> HIFLO)%IOUT -> HIPLO)))

((POS -> FAILHI)((IN IS R)(OUT ISNT SHUTOFF))(O)((IIN -> LOP)))
((POS -> PAILLO) TRUE (0)((OUT -> LOSUPPC)(OUT -> LOSUPPR)

(OUT -> LOSUPP)(IN -> HIBACKPC)(IN -> HIBACKPR)(IN -> HIBACKP)))
((POS -> PAILLO)((OUT IS R)(OUT ISNT SHUTOFF))(0)((IOUT -> LOP)))
((POS -> PAILLO) TRUE (O)((IIN -> LOFLO)(IIN -> LOFLO)))
§§Pos -> FAILLO)(glN IS R)(IN ISNT SHUTOFF))(0)((IIN -> HIP)))

POS -> DRIPTHI)((IN ISNT COMPLOSUPPR))(0)((OUT -> DISTHISUPPC)

(OUT -> DISTHISUPPR)(OUT -> DISTHISUPP)))

((POS -> DRIPTHI)((OUT ISNT COMPHIBACKPR))(O)((IN -> DISTLOBACKPC)

(IN -> DISTLOBACKPR)(IN -> DISTLOBACKP)))

((POS -> DRIPTHI)((IN ISNT COMPLOSUPPR)(IN ISKT SHUTOFF)

(OUT IS R))(O)(éIOUT -> DISTHIP)))

((POS -> DRIFPTHI)((IN ISKT COMPLOSUPPR)(OUT ISNT COMPHIBACKPR))(O)

((IIN -> DISTHIFLO)(IOUT -> DISTHIFLO)))

((POS -> DRIPTHI)((IN IS R)(IN ISNT COMPHISUPPR)

(OUT ISNT COMPHIBACKPR))(O)((IIN -> DISTLOP)))

((POS -> DRIPTLO)((IN ISNT COMPHISUPPR))(0)({(OUT -> DISTLOSUPPC)

(OUT -> DISTLOSUPPR)(QUT -> DISTLOSUPP)))

((;0S -> DRIPTLO)((OUT ISNT COMPLOBACKPR))(O)((IN -> DISTHIBACKPC)

(IN => DISTHIBACKPR)(IN -> DISTHIBACKP)))

((POS -> DRIPTLO)((IN ISNT COMPHISUPPR)(IN ISNT SHUTOFF)

(ou? 1S R))(0)((IOUT -> DISTLOP)))

((POS -> DRIPTLO)((IN ISNT COMPHISUPPR)(OUT ISNT COMPLOBACKPR))(O)

((IIN -> DISTLOPLO)(IOUT -> DISTLOFLO)))

((POS -> DRIPTLO)((IN IS R)(IN ISNT COMPLOSUPPR)

(OUT ISNT COMPLOBACKPR))(O)((IIN -> DISTHIP)))

((POS -> COMPHI) TRUE (0)((OUT -> COMPHISUPPC)(OUT -> COMPHISUPPR)

(OUT -> COMPHISUPP)(IN -> COMPLOBACKPC)(IN -> COMPLOBACKPR)

(IN -> COMPLOBACKP)))

((POS -> COMPLO) TRUE (0)((OUT -> COMPLOSUPPC)(OUT -> COMPLOSUPPR)

(OUT -> COMPLOSUPP)(IN -> COMPHIBACKPC)(IN -> COMPHIBACKPR)

(IN -> COMPHIBACKP)))

((POS -> DRIPTHI) TRUE (0)((OUT ~> DRIFTHISUPPC)
(OUT -> DRIPTHISUPPR)(QOUT -> DRIFTHISUPP)(IN -> DRIPTLOBACKPC)
(IN -> DRIPTLOBACKPR)(IN -> DRIFTLOBACKP)))

((POS -> DRIFTLO) TRUE éo)((oum -> DRIPTLOSUPPC)

(OUT -> DRIPTLOSUPPR)(OUT -> DRIPTLOSUPP)(IN -> DRIFTHIBACKPC)

(IN -> DRIPTHIBACKPR)(IN -> DRIPTHIBACKP)))
éépos -> CLOSED) TRUE éO)ééIN -> SHUTOFFP) (OUT -> SHUTOFF)))

IN -> SHUTOFP) TRUE (0)((OUT -> SHUTOFF)))

((oUT -> SHUTOFP) TRUE (O)((IN -> SHUTOFF)))
éépos -> PAILCLOSED) TRUE §o)((11u -> x);)

OUT -> BLOCKED) TRUE (O)((IOUT => I""P)))

((IN -> BLOCKED)((OUT 1S SUP))(0)((I0UT -> LOP)))

((IN -> BLOCKED) TRUE (0)((IIN -> NOFLO)(IOUT -> NOFLO)))
((ouT -> BLOCKED) TRUE (0)((IIN -> KOFLO)(IOUT -> NOFLO)))
((WwS -=> BURST) TRUE (0)((OUT -> KOSUPP)(OUT -> NOSUPPR)
(ouT -> KOSUPPC)(IN -> NOBACKP)(IN -> NOBACKPR)
(IN -> NOBACKPC)))
5 WS -> BURST) TRUE (0)((IN -> LOBACKPR)))
IN -> GAS)((POS IS OPEN))(0)((OUT -> HISUPPR)))
((IN -> GAS)((®0S IS OPEN))(0)((OUT -> HISUPPC)))

Attribute: NS - Normal States

((POS IS OPEN)((POS -> CLOSED)))

((POS ISNT COMPHI)((POS -> COMPHI)))

((POS ISNT COMPLO)((POS -> COMPLO)))

((our ISNT SHUTOPP)((OUT -> SHUTOFPF)))

((IN ISNT SHUTOFF)((IN -> SHUTOFF)))

((IN ISNT COMPHISUPPR)((IN -> COMPHISUPPR)))
(iIN ISNT COMPLOSUPPR)((IN -> COMPLOSUPPR)))
((OUT ISNT COMPHIBACKPR)((OUT -> COMPHIBACKPR)))

{(0UT ISNT COMPLOBACKPR)((OUT -> COMPLOBACKPR)))
((Ws IS R))

Attribute: SE - Spontaneous Events

(WS -> BLOCKED)
(WS -> BURS?T)

Attribute: WS - Working States

gﬁpos 1S OPEN)((POS IS CLOSED)))

VALVE 1S ROTBLOCKED)((VALVE IS BLOCKED)))
((VALVE IS NOTBURST)((VALVE IS BURST)))
((VALVE ISKT BLOCKED)((VALVE IS BLOCKED)))

Attribute: LF - Latent Pailures

(VALVE IS BLOCKED)
(VALVE IS BURST)

Page 98

T.2 HAZLB2

The library HAZLB2 has 26 components.
in table 7.4.

Table 7.4 Couponents in HAZLB2.

Page 99

The names and uses are shown

Component: Used for: Ports:

AIRREG Air regulator set, air, in, out

BFTANK Buffer tank lev, drn, sv, of, t,
P, in, out

CCN Normaly closed contact act, in, out

Cv Check valve in, out

CVALVE Check valve in, out, pos

DIV Divider in, outt, out?2

EVAP Evaporator in, out, drn, heat,
sv, lev, p, t

HEX Heat exchanger hin, hout, in, out

INVER?T Inverter in, out

LGTANK Liquid/gas tank sv, p, lev, drn,
in, out

LOAD Load in, out

MIX Mixer in1, in2, out

OCN Normaly open contact in, out, acw

PIPE Pipe v, ¢, p, ¥, t, in, out

PORT External connection port

PUMP Pump pwr, in, out

RVALVE Regulation valve pos, in, out

SEP Separator p, sv, lev, drn,
in, out

SH Senser high in, out

SIGDIV Signal divider in, out1, out2

SIGMIX Signal divider in1, in2, out

SL Sensor low in, out

sSv Safety valve in, out

TPTANK Transfer tank drn, of, in, out

TRANSA Transformer in, out

VALVE Valve pos, in, out

GRAPHIC FORMS IN LIBRARY: HAZLBZ2

*2dT2VH ut sjusuodwoo oyydedp g2°L 84nB1g

N
PFIN, BV o pUT !
/ \ 08
<
ET \CT u‘r T
\ /ZEV
Lot bur
AIRREG BFTANK 1 | con cv CVALVE o
v
pout AN 'ULL"\
N
T AL EV
1 —
{ uY —
T2
RiN
— —— brn
DIV EVAP 1 HEX INVERY LGTANK 1
[N
m DU T ’\cr 1.* YEFP
N2 I:u'r
ORT
LOAD MIX 1 OCN PIPE PORT 1

001 9¥3s(q

*pANUTRU0D 2ZgIZVYH ul sjusuodmod ojydedp g°L 94nd

GRAPHIC FORMS IN LIBRARY: HAZLBZ2

UT

()

PORT PUMP] RVALVE SEP 1 SH
o'/-K |
N
. .
T2 —
N2 — fou
S1GDIV SIGMIX 1 | s sV ' 'rrrmx\bﬁ?c)

&

TRANSA

(1]
uT

VALVE !

10| 8¥sqg

Page 102

In HAZLB2 a special failure generating component (PORT) is
available.

This 1is a contracted component used for generating possible
external disturbances that could be let into the system represented
by a draft.

If a system includes open ports, as supply, drain and power ports,
this component would assure the generation of possible disturbances
from the open port while closing it by connection.

Compared to the PTLIB3 this component is a replacement of the
drain, supply, power, etc. components, and should be used as such.

The discretisation levels for disturbances used in HAZLB2 are based
on the following:

Table 7.5 Discrete levels in HAZLB?2.

HI So high that the disturbance can only be
compensated by shutdown.

DISTHI High enough to cause an accident, not so
high that a compensation is impossible.

HISUP High disturbances in the supply pipe.

HIBACK High disturbances reverse from the
outlet.

COMPHI Compensation of disturbances.(Regulation)

DISTLO

10
Defined analogously.

LOSUP

LOBACK

COMPLO

ZERO Disturbances resulting in valves
indistinguishable from zero.

REV Reversal of flow.

Corresponding failure modes that can be distinguished in flow
system is:

Page 103

Table 7.6 Pailure modes in HAZLB2.

BLOCKED causing zero flow.
BURST causing zero pressure.
LEAK causing low.

SUPPLIED
DRAINED
RELIEVED
SHUTOFF
CONTAMINATED
ON

OFF

FAILON
FAILOFF

In the following an example of the component RVALVE is shown.

Page 104

T.2.1 Example of a component in HAZLB2.

. e . S T M —— - — — vy
E XY St P 3 -+ A

RIKKE - Library: HAZLB2

Generic Component: RVALVE
1-Mar-84 13:04:46

Attribute: VL - Variable List

(IN PV)
(VALVE PV)
(oUT PV)
(WS PV)
(Pos FV)
gnE FV)

R FV)

(0 PV)

Attribute: PL - Port List

(IN (IN))
(ouT (0UT))
(pPos (Pos))

Attribute: TF - Transfer Punctions (Mini-fault-trees)

((IN => HISUPP; TRUE (1)((IN -> AHIP)))
((IN -=> AHIP)((IN ISNT SHUTOFF)(IN ISNT COMPLOP)
(OUT ISNT COMPLOBACKP))(O)((IN -> HIP)))
((IN -> AHIP)((IN ISNT SHUTOFP)(IN ISNT COMPLOP)(OUT ISNT
COMPLOBACKP)
(VALVE IS OPEN))(O)((OUT -> HIP)))
((IN => AHIP)((IN ISNT SHUTOFF)(OUT ISNT SHUTOFF)(IN ISNT
COMPLOP)
(OUT ISNT COMPHIBACKP)(OUT ISNT SHUTOFF)(VALVE IS OPEN))(0)
((IN => HIPLO)(OUT -> HIFLO)))
((OUT -> HIBACKP) TRUE (1)((OUT -> AHIP)))
((OUT -> AHIP)((OUT ISNT SHUTOFF)(OUT ISNT COMPLOBACKP)
o (g??VE IS OPEN)(IN ISNT SHUTOFF)(IN ISNT COMPLOP))(0)((IN ->
IP
((ouT -> AHIP)((OUT ISNT COMPLOBACKP)(IN ISNT COMPHIP))(O)
((oUT -> LOFLO)(IN -> LOFLO)); |
((OUT -> AHIP)((IN ISNT SHUTOFF)(IN ISNT COMPLOP)

(0OUT ISNT SHUTOFF)(VALVE IS OPEN)(OUT ISNT COMPLOBACKP))(0)
((OUT -> HIP)))

((our -> AHIP)((OUT IS SUPPLIED)(OUT ISNT SHUTOFF)

(IN ISNT SHUTOFF)(VALVE IS OPEN))(O)((OUT -> REVFLO)(IN ->
REVFLO)))

((IN => LOSUPP) TRUE (1)((IN => ALOP)))

((OUT -> LOBACKP) TRUE (1)((OUT -> ALOP)))

((IN -> ALOP)((IN ISNT COMPHIP)(OUT ISNT COMPHIBACKP)
(OUT ISNT SHUTOFF)(VALVE ISNT CLOSED))(0)((IN -> HIP)
(oUT -> HIP)))

((IN -> ALOP)((IN ISNT COMPHIP;(OUT ISNT COMPLOBACKP))(0)
((IN -> LOPLO)(OUT => LOFLO)))

((??T -> ALop)gg?UT ISNT COMPHIBACKP)(OUT ISNT SHUTOFF))(0)

oUT -> LOP

((ouT => ALOP)((OUT ISNT COMPHIBACKP)(IN ISNT COMPLOSUPP)
(IN ISNT SHUTOFF)(OUT ISNT SHUTOFF)(VALVE IS OPEN))(0)

Page 105

((IN -> HIFLO)(OUT -> HIFLO)))
((our -> ALOP)((OUT ISNT COMPHIBACKP)(OUT ISNT SHUTOFF)
(VALVE IS OPEN)(IN ISNT COMPHIP))(O)((IN -=> LOP)))
((ouT -> AHIP)((VALVE IS OPEN)(OUT IS SUPPLIED)(IN ISNT SHUTOFF)
(OUT ISNT SHUTOFF))(O){(IN -> REVFLO)(OUT -> REVFLO%))
221N -> PDHIFLO§§2VALVE IS OPEN))(0)((OUT -> PDHIFLO)))
IN -> PDHIFLO)((VALVE IS CLOSED))(0)((IN -> AHIP)(WS -> BURST)))
((VALVE -> FAILCLOSED) TRUE (O)((VALVE -> CLOSED)))
gépos -> CLOSED)((VALVE ISNT STUCK))(O)((VALVE -> CLOSED))%
VALVE -> CLOSED) TRUE (0)((IN -> BLOCKED)(OUT -> BLOCKED)))
((POS -> CLOSED)((VALVE ISNT STUCK))(0)((IN -> SHUTOFF)
(OUT -> SHUTOFF)))
((POS -> OPEN)((VALVE ISNT STUCK))(O)((VALVE -> OPEN)))
((VALVE -> FAILOPEN)((IN IS SUPPLIED))(0)((OUT -> HISUPP)
(OUT -> AHIP)))
((IN -> SUPPLIED)((VALVE IS OPEN))(O)((OUT -> SUPPLIED)))
(oUT -> SUPPLIED)((VALVE IS OPEN))(O)((IN -> SUPPLIED)))
§IN -> BLOCKED) TRUE (o)(éovm -> BLOCKED
OUT -> BLOCKED) TRUE (O)((IN -> BLOCKED)))
(IN -> SHUTOFF) TRUE (0)((OUT -> SHUTOFF)))
goum -> SHUTOFF) TRUE (O)((IN -> SHUTOFF)))

IN -> NOSUPP)((OUT ISNT SUPPLIED))(O)((IN -> NOP)(OUT -> NOP)))
(IN -> BLOCKED)((0OUT IS SUPPLIED))(O)((OUT -> LOP)(IN -> LOP)))
gln -> BLOCKED) TRUE §IN -> NOFLO)(OoUT -> NOFLO))%
OUT -> BLOCKED) TRUE (o) (IN -> NOFLO)(OUT -> NOFLO)))
(VALVE -> CLOSED) TRUE (O)((IN -> NOFLO)(OUT -> NOFLO)))
QVALVE -> CLOSED) TRUE (O)(§IN => HIBACKP)%)

VALVE -> BLOCKED) TRUE (0)

5 (IN -> HIBACKP)))

(IN -> BLOCKED)(OUT -> BLOCKED)

VALVE -> BLOCKED) TRUE (0)((oUT -> NOSUPP;))
VALVE -> CLOSED) TRUE (0)((0UT -> NOSUPP)))

IN -> NOSUPP) TRUE (0)((OUT -> NOSUPP)))

IN -> ATM)(EVALVE IS OPEN)%(O)(&OUT => ATM)))

OUT -> ATM)((VALVE IS OPEN))(O)((IN -> ATM)))
(VALVE -> BURST) TRUE (O)((IN -> ATM)(OUT -> ATM)))
IN -> ATM) TRUE (1)(EIN -> ANOP))%

OUT -> ATM) TRUE (1)((OUT -> ANOP)))

IN -> ANOP)((VALVE IS OPEN))(0)((IN -> NOP)))
IN -> ANOP) TRUE (O0)((ouT -> NOP));

OUT -> ANOP)((OUT ISNT SHUTOFF))(O)((0UT -> NOP
OUT -> ANGP)((VALVE IS OPEN)(OUT ISNT SHUTOFF))

)
(0)((IN -> NOP)))

IN => HIT%EEVALVE IS OPENgg §OUT -> HIT))g

(
2
(
5
(
5
(
ﬁ
5
(
5
(
ﬁ
(
5
(
§
(
5
(
5
((In
((In
2
(
ﬁ

%
((
5 -> LoT)((VALVE IS OPEN ;(OUT -> LOT))
(IN -> HICONC)((VALVE IS OPEV))()((OUT -> HICONC)))
5 -> Locouc)g VALVE IS OPEN)) 0)§ OUT -> LOCONC)))
-> LIQUID)((VALVE IS OPEN))(0)((OUT -> LIQUID)))
(IN -> GAS)((VALVE IS OPEN))(0)((0OUT -> GAS)))
2 -> CONTAMINATED)((VALVE IS OPEN))(O)((OUT -> CONTAMINATED)))
-> COMPHIP)((VALVE IS OPEN))(0)((OUT -> COMPHIP)))
(IN -> COMPLOP)((VALVE IS OPEN))(0)((OUT -> COMPLOP)))
(IN => COMPHIT)((VALVE IS OPEN))(0)((OUT -> COMPHIT)))
(IN -=> COMPLOT)((VALVE IS OPEN))(0)((0OUT -> COMPLOT)))
(IN -> COMPHICONC)((VALVE IS OPEN))(0)((OUT -> COMPHICONC)))
2 ~> COMPLOCONC) ((VALVE IS OPEN))(0)((0UT -> COMPLOCONC)))
OUT -> COMPHIBACKP)((VALVE IS OPEN))(0)((IN -> COMPHIBACKDP)))
(OUT -> COMPLOBACKP)((VALVE IS OPEN))(O)((IN -> COMPLOBACKP)))
(IN > HIVAC% VALVE IS OPEN)ggog OUT -> HIVAC g
(IN => LOVAC)((VALVE IS OPEN))(0)((0UT -> LOVAC))
OUT -> HIVAC)((VALVE IS OPEN))(0)((IN -> HIVAC)))
OUT -> LCVAC)((VALVE IS OPEN))(0)((IN -> LOVAC)))
IN => HIVAC)((VALVE IS OPEN)(OUT ISNT SHUTOFF))(0)
((IN -> REVPLO)(OUT -> REVFLO)))

Page 106

((OUT -> HIVAC)!{(VALVE IS OPEN)(IN ISNT SHUTOFP))(O)
((IN -> HIPLO)(IN -> LOFILO)))
((IN -> HISUPP)((VALVE IS OPEN)(POS ISNT COMPLO))(0O)
({ouT -> HISUPP)))
((OUT -> HIBACKP)((VALVE IS OPEN)(VALVE ISNT COMPLO))(0O)
((IN -> HIBACKP)))
((IN ~> LOSUPP)((VALVE ISNT COMPHI))(0)((OUT -> LOSUPP)))
((OUT -> LOBACKP)((VALVE IS OPEN)(VALVE ISNT COMPLO))(0)
((IN -> LOBACKP)))
((POS -> COMPHI)((VALVE ISNT STUCK))(0)((VALVE -> COMPHI)))
((POS -> COMPLO)((VALVE ISNT STUCK))(0)((VALVE -> COMPLO)))
fiIN ~> DRAINED)((VALVE IS OPEN))(0)((OUT -> DRAINED ;)
OUT -> DRAINED)((VALVE IS OPEN))(O)((IN -> DRAINED)))
((IN => RELIEVED)((VALVE IS OPEN))(O)((OUT -> RELIEVED)))
((ouT -> RELIEVED)((VALVE IS COPEN))(O)((IN - RELIEVED)))

Attribute: NS - Normal States

((VALVE IS OPEN)((VALVE -> CLOSED)))

(gOUT ISNT SHUTOFF)&(OUT -> SHUTOFFg))

((IN ISNT SHUTOFF)((IN -> SHUTOFF))

((IN ISNT COMPLOP)((IN -> COMPLOP)))

((IN ISNT COMPHIP)((IN -> COMPHIP)))

Egoum ISNT COMPLOBACKP%?(OUT -> COMPLOBACKP)g)
OUT ISNT COMPHIBACKP)((OUT -> COMPHIBACKP)))

((VALVE ISNT STUCK)((VALVE -> STUCK)))

EEVALVE ISNT COMPLO)(§VALVE -> COMPL0)))

VALVE ISNT COMPHI)((VALVE -> COMPHI)))

Attribute: SE - Spontaneous Events

(VALVE -> BURST)
EVALVE -> BLOCKED)
VALVE -> FAILCLOSED)
(VALVE -> PAILOPEN)

Attribute: WS - Working States

§§VALVE ISNT STUCK)((VALVE IS STUCK)))
VALVE IS OPEN)((VALVE IS CLOSED)(VALVE IS BLOCKED)
(VALVE IS BURST)))

Attribute: LFP - Latent Pailures

(VALVE IS STUCK)
(VALVE IS BLOCKED)
(VALVE IS BURST)
(VALVE IS FAILCLOSED)

- - - — —— —— S - ———— — ——— — =

Page 107
8. PILOSOPHY OF GENERIC MODELLING

The automatic fault tree generation almost has reached a point
where it can be used routinely. A well recognised problem,
though, is that of creating the component models to be used.
This is the work of the domain expert.

The considerations are how the component modelling process
should be, and what sizes of fault trees results from
different kind of models. This is an important question
because the trees grow very rapidly, if you insist on making
them at the same time very thorough.

For the modelling work described here, three criteria were
established:

(1) The models should be universal, in the sense that, given
a model library, the only work required in constructing a
new tree should be to draw a flow sheet, piping diagranm,
or wiring diagram and input of the relevant top event.

(2) The event sequences placed in the tree should be a proper
physical description of the dynamic behavior of the
plant.

(3) The models should have a well defined scope and within
the scope of the disturbance types and failure modes
treated, the fault trees should be complete.

These are quite ambigious goals, when applied <to process
plants or electrical systems. They are considered important,
when using fault tree analysis as a design aid however; the
first because otherwise the time taken for automatic analysis
is longer than for manual; the second and third Dbecause
mistakes are otherwise easily made and reduce all confidence
in results.

Shafaghi (1982) distinguishes between pure logic or predictive
models, which aim at producing fault tree results directly via
a pattern matching process, and descriptive models, which
explain the physical processes occuring. The problem with
pure logic models is that all possible patterns must be
predicted beforehand, and there is often controversy
concerning the correct form of the results (Henley and
Kumamoto, 1977 ;Locks, 1979). Descriptive models can be used
to analyse component configurations, which have never yet been
seen, since the physical processes involved are constant.

Most published models fall between the extremes of pure 1logic
models and descriptive models. The models described here are
entirely descriptive.

In (Taylor, 1973) a model construction method was described
which fulfills the three criterions mentioned earlier and the
following two requirements:

(1)

(2)

Page 108

It is necessary to distinguish between disturbances of
flow (current), disturbances of pressure (voltage), and
disturbances of variables such as tenperature,
concentration, phase etc., s8ince these have different
causal structures.

It is necessary to take account of disturbances which

spread upstream as well as downstream in an energy flow
systenm.

Briefly, the model construction is as follows:

(1)

(2)

Then

(3)
(4)

(5)

(6)

(7)

(8)

(9)

A range of components is chosen, and variables to
describe their states.

A set of discrete variable values is chosen.

for each component:

A set of functional and failure modes is described.

Equations are written to describe functioning and
failure.

An equation bigraph is drawn in which squares represent
equations, circles represent variables.

All possible causal relationships are drawn on the
bigraphs.

Signal flow graph fragments are extracted from the
graphs.

For each signal flow graph fragment, an input (x) state
-> output table is drawn.

Mini fault trees are written for each entry in the table.

8'1

Page 109

Model simplification.

In most risk analysis of process plants and electric circuits

the

fault +trees generated are rather big with many branches

and loops. To handle the fault trees simplifications are
necessary.

(1)

(2)

(3)

(4)

(5)

(6)

(7}

A fault tree should be generated, so that propagation of
disturbances 1is completely described, while duplications
are eliminated.This pattern constitutes the first
simplification of the models.

When plotting the propagation of a distubance such as
HIGHPRESSURE, its effect at the output of a component
will depend on the Dback pressure or downstream
resistance. At each step along a chain of components,
the question must be asked "what 1is the resistance
downstream". This leads to a fault tree structure, which
corresponds to an approximate solution of flow equations
at each component. Fortunately, such a work is not
necessary. If instead of searching for disturbances, a
search is made for potential causes of disturbances, such
as HIGH SUPPLY PRESSURE, and HIGH BACKPRESSURE, a simpler
structure can be achieved.

A third simplification in mini fault trees is deletion of
normal conditions. If event A causes event B under
condition C, and C is a condition which is normally
fulfilled, and there is nothing in the cause of A which
can invalidate C, C may be deleted from the mini fault
tree. The justification for this is that the probability
of a normal condition is close to 1. Deletion of such a
condition will not affect +the fault tree calculation
significantly, and will improve its clarity.

If an event produces the same effect under all
conditions, the conditions may be deleted, in a form of
"don't care” simplification. The subsumption rule of
logic can be used to simplify models. If event A causes
B irrespective of C, the mini fault tree involving A, B
and C may be deleted. This is a particularly effective
simplification in combination with normal state deletion.

Logical inversion of conditions is often wuseful. If a
valve has positions CLOSED, SLIGHTLY OPEN, HALF OPEN,
FULLY OPEN, the condition NOT-CLOSED can serve a three
fold branching until the "leaves" of " the +tree are
reached.

Cutset to tieset transformation can reduce branching in
fault trees. If event X in component type K causes event
Y under condition A, and also under condition B and C,
then with models in cutset form, branching increases the
size of the tree six fold for every instance of type K.

By conversion to tieset form, branching is reduced to
four fold.

By using complex conditions, branching can be reduced
even further. Seperate conditions A, B and C can be
reduced to an equivalent complex condition D.

(8)

Page 110

A transformation called sequence splitting is very useful
particularly in the analysis of operating procedures. An
event X which can lead to events Y and Z under condition
A, and to event Y and W under condition B, will lead to a
twvo fold branching if the cause of Y is sought. By
splitting into X -> Y, X & A ->2, X & B -> VW, this
branching is avoided.

So far the simplifications have preserved the 1logic of the
models. The remaining simplifications involve approximations
which are generally, but not always conservative.

(9)

(10)

(11)

(12)

(13)

(14)

Possible compensating conditions can be included in mini
fault trees. But if the compensation results in a worse
disturbance in the same direction, the compensating
condition may reasonably be deleted, on the assumption
that a fault tree for wvorse disturbance will Dbe
constructed. Por example, in the mini fault tree for a
valve IN -> LOWPRESSURE, VALVE IS NOT CLOSED => OQUT ->
LOWFLOW the condition VALVE IS NOT CLOSED may be omitted,
since it will result in OUT -> NOFLOW, a worse
disturbance. This may be termed "worse effect deletion”.

In the theory described in (Taylor, 1982) a distinction
is made between event sequences AB and BA. This is
important if there is a difference in consequences for
the two sequences. This is often the case if for example
A initiates a safety action which takes some time to come
into effect and prevent the results of events A and B.
All cases where sequence is important though involve
loops. In the absence of 1loops it is permissible to
consolidate the sequences, so that AB and BA are treated
together.

It was pointed out (Taylor, 1982) that a disturbance LOW
at the input to a component can cause a disturbance LOW
at the output (can be corrected bdy shutdown) or
DISTURBEDLOW (can be corrected by regulation.

The DISTURBEDLOW transition may be deleted provided that
it is known that <the larger LOW disturbance is always
worst, and that fault trees will be drawn for +the worst
disturbance.

In some cases a failure can prevent an accident, e.g. an
instrument failure causing a trip "just in time" to

prevent a serious incident. Such "miracle” effects can
generally be deleted from models.

It is generally advisable to distinguish Dbetween
disturbances caused by failures, and intentional
disturbances caused by control devices, e.g. distinguish
FAILHIGH and CONTROLHIGH disturbances. Otherwise,
algoritms will search in failure structures for sources
of potential control actions.

In components which accumulate energy or mass, such as a
tank, a small, 1large or very large disturbance in flow
can cause a small disturbance in level either at input or
output. The same s8ix disturbances can carry the level
disturbance to high and then to extreme levels. The
result, in a complete model, is a not very informative

Page 111

216 fold branching in the fault tree; a kind of
"momentum principle®, in which a disturbance, once
started, continues, requires only that level disturbances
are coded according to their origin. Branching is
reduced to six fold.

(15) ¥With two storage components connected together, a high
level in one causes a high pressure, causing a high
outflow, which in turn can cause a high 1level in the
second, a reduced inflow, and an equalisation of levels.
Such event sequences simulate level transients in
multiple storage systems, but are not particularly
enlightening from the point of view of failure analysis.
Specific coding of 1level variations according to cause
can restrict such "ping-pong"” event sequences between
storages, so that event sequences propagate either
upstream or downstream, but not back and forth.

Page 112

8.2 Sige versus completeness of fault trees.

The size of a fault tree is best measured for our purposes in
teras of the number of branches at the highest level of the
tree (i.e., at primicy failure).

If models are build according to the principles mentioned
above and the simplifications 1-15, then a fault tree for a
linear system ‘1 single pipe line) will have a size which
grows linearly with the number of components. If sequence
simplification is not applied, then the number of branches in
the treﬁ will double at every component, giving which is at
most K*2" where K is a constant, and N is the number of

components. With some 20 components, this gives several
million branches. It is obvious that simplification which is

not necessarily conservative, must, for practical purpose, be
applied.

Without simplification, there is an additional doubling of
fault tree sigze for some disturbances at every resistive
component.

Models which are build following the pattern in section 8.1
may be termed "fully physically conditioned™. At the top
event they will generate up to size branches, and at every Y
junction a four fold branching will follow. The size of a
tree for which simplifications are applied, bDut which are
neverthelﬁss fully physically conditioned, is therefore less
than K2§4 wvhere M is the number of Y junctions, and K

is a “constant. With 10 Y junctions, this gives a tgtal of
area 1 m branches.

Deletion of the resistance conditions and downstream
compensations yields models similar to those of Martin Solil
et al. (1978). Purther deletion of the distinction between
flow and pressure disturbances produces models similar to
those published by Amendola et al. and Berg et al. Purther
deletion of transfers of information in two-stream directions
froduges models similar to <those published by Wu et al.
1977).

Of these simplifications, the first, deletion of resistance
conditions, is the most effective, since it reduces the number
of branches in the tree to a number proportionally to the
number of components in the system analysed.

One might think that the deletion of resistance conditions is
conservative because cutset sizes are reduced, and generally
it is so. However, in the absence of conditioning, it might
be thought that a safety device would work, when in fact a
pressure signal could not be transmitted past a resistance or
past a Y Jjunction, because, for example, a valve had failed
open. In such cases, the simplification is definitely not
conservative.

On reaching a control component (such as a regulating or shut
off valve?, component by component algorithm give a branching
in the fault tree, with one branch for the disturbance, and
one branch for failures in any potential control action. For
simple loops such branches soon terminate. But for cascade
loops, and loops with two way flow of information, some

Page 113

branches will not terminate directly, and lead to a global
search of almost the whole system, looking for signals which
might activate the safety action. This corresponds to a
global search for negative loops in Lapp and Powers algorithm.
Fortunately, most of the "compensation™ branches of the fault
tree terminate without 1loop closure, and can be pruned from
the trees.

The many branches of a fully physically conditioned +tree
involve many repeated subtrees. An effective strategy is to
store the fault tree as it is generated, and to make a cross
link between parts of the tree when such repetitions are
found. The value of this strategy was noted by (Lapp and
Powers, 1977). this strategy imposes limitations on the size
of fault tree which can be produced however, because of the
storage required during construction. There 1is also an
insisious pitfall inherent in the strategy, if it is applied
to two alternative (OR gate) branches of a tree. The branches
may involve different timings, or alternative conditions, in
the physical system so that a potential safety action, found
in a rer~rated branrh, is not compatible with all disturbances
requiring that safety action. Ure of the repetition detection
strategy may be applied at any time above an AND gate, Dbut
should be applied only with care above an OR gate.

Fault tree sizes close to the above bounds are achieved in
practice. Por example, the pressurised water reactor high
pressure soolant injection system of (Rasmussen, 1975) gives a
fault tree for loss of flow with branches.

Systems with up to six or seven Y junctions can be treated on
a small computer (128 K bytes) and with perhaps ten Y
junctions on a large computer (2 M bytes). To treat parts of
the fault tree corresponding to each are later interconnected.
In this way, fully physically conditioned <fault trees of
unlimited s8ize can be constructed. The repetition strategy
can be applied under close control by analyst.

A useful strategy would be to apply cut off rules to the true
construction, 8o that, for example fourth or fifth order
cutsets were omitted. This can be done interactively, but
automatical use requires a distinction between possible
"normal state"” and "unusual disturbance” branches of an OR
gate.

Page 114

9. REFERENCES.

Amendola, A.; Pouchet, A.; Contini, S.; Squellati, G.;
Mongellunzzo, R.

Component modelling and computer aided fault tree construction
To be published.

Andrews, J.D.

A user guide to the fault tree and network evaluation progranm
faunet.

Midlands Research Station, England, november 1983, proj M45

Berg, U.; Hellstrom, P.; Lydell, B.
Fault tree synthesis using the CAT algorithm.
Report PSA 02-81 Swedish Nuclear Power Inspectorate.

Larsen, P. Dines
Grace user manual.
Riso National Laboratory, april 1982, Riso-M-2343.

Larsen, P. Dines; Olsen, J.V.

A standardized device-independent graphics system.
Interfaces in Computing, 2, 167-179, 1984.

Olsen, J.V.

A data-base management system for FORTRAN-IV on PDP-11.
Riso National Laboratory, Electronics Department,
Internal note to the system. [DBFOR.MEM]

Olsen, J.V.

A device independent graphic language for minicomputers 1like
PDP-11 or PDP-8.

Riso National Laboratory, Electronics Department,

Internal note to the system. [HCOPY.MEM]

Olsen, J.V.

A device independent graphic package in FORTRAN for PDP-11
under RT11.

Riso National Laboratory, Electronics Department,

Internal note to the system. [GRPLOT.MEM?

Olsen, J.V.

RIKKE - viewed as an expert system.

Riso National Laboratory, Electronics Department.
Internal note to the system. [EXPERT.MEM]. 1984.

Olsen, J.V.; Taylor, J.R.; Nielsen, PF.

Use of automatic fault tree and cause consequence analysis
methods in the analysis of a chlorine evaporator. Computers
in chemical engineering - case studies in design and control.
A symposium organised by the London and South-Eastern Branch
of

the Institution of Chemical Engineers. London, june 3rd 1980.

Platz, 0.; Olsen, J.V.

FAUNET: A program package for evaluation of fault trees and
networks.

Research Establisment Riso, Electronics Department, september
1976. Riso Report no. 348,

Page 115

Platz, 0.; Olsen, J.V.

FAUNET: A program package for fault tree and network
calculations.

in Proceedings of the topical meeting, Probabilistic Analysis
of Nuclear Reactor Safety, may 8-10 1978, Newport Beach,
California USA.

Platz, 0.; Olsen, J.V.

Calculating the number and size of prime implicants for a
modularized fault tree.

in Lauger, E.; Moltoft, J.(Eds.): Reliability in electrical
and electronic components and systems.

North-Holland Publishing Company, 1982

Rasmussen, N.

React*>r Safety Study. An assessment of accident risks in U.S.
commercial power plants.

WASH-1400, NUREG-75/014, 1975.

Shafagi, A.
Component modelling for fault tree analysis. Doctoral thesis.
Loughborough University. Dept. Chem. Engineering 1982.

Taylor, J.R.
A formalisation of failure mode analysis of control systems.
Riso National Laboratory, october 1973, Riso-M-1654.

Taylor, J.R.

An algorithm for fault tree construction.

Riso National Laboratory, Electronics Department, internal
report april 1980, N-19-80.

Preliminary work for:

Taylor, J.R.
An algorithm for fault-tree construction.
IEEE Transactions on Reliability. vol R-31, N 2, june 1982.

Taylor, J.R.
Automated hazard analysis - pitfalls, perspective and
prospects.

International conference on Risk Analysis, London. OYEZ.

Taylor, J.R.

Automatic fault tree construction with RIKKE - A compendium of
examples, volume 1 basic models.

Riso National Laboratory, september 1981. Riso-M-2311.

Taylor, J.R.

Automatic fault tree analysis of large systems using RIKKE.
Riso National Iaboratory, Electronics Department, internal
report, may 1982. N-13-82.

Taylor, J.R.

Automatic fault tree construction with RIKKE - A compendium of
examples, volume 2 control and safety.

Riso National Laboratory, february 1982. Riso-M-2311.

Page 116

Taylor, J.R.

Generality of component models used in automatic fault tree
synthesis.

Riso National Laboratory, march 1979. Riso-M-2162.

Taylor, J.R.; Hollo, E.

A program for plotting cause consequence diagrams.

Research Establishment Riso, Electronics Department. april
1977, Riso Report M-1932.

Taylor, J.R.; Olsen, J.V.

Treatment of operator error in RIKKE-II.

Riso National Laboratory, Electronics Department, internal
report, august 1983. N-22-83.

Taylor, J.R.; Olsen, J.V.

A comparison of automatic fault tree construction with manual
metheds of hazard analysis.

4'th Int. Symp. on Loss Prev. and Safety Prom. in the
Proc. Ind., Harrogate, England, september 12-16 1983.

EFCE Publ series, N 33 vol 1, Pergamon Press.

Wu, J.S.; Salem, S.L.; Apostolakis, G.E.

Use of Decision Talks in Systematic Construction of Pault
Trees.

in Pussel, J.B.; Burdick, G.R. (Eds.): Nuclear Systems
Reliability BEngineering and Risk Analysis, SIAM 1977.

LIST OF TABLES.

1.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
4.1
4.2
4.3
4.4
7.1
7.2
7.3
7.4
7.5
7.6
A1
B.1
c.1
c.2
c.3
C.4
c.5

Levels of informationcccccieeennenccccnn cone
Some commands in RIKKEciciieincenecccnnnne
Some commands in GRACEcieeeeceecrnnccnnne
Link typesceiieernenncscccanscncscascsonscnsnes
Options in command FAULT cecctcesanns
Commands in option BREAK ALLccccecceeceneenns
CUT code NUMDErSceoesecocccsscsssssssonocanas
Values assigned to gates in different modes
Subcommands in GRAPHICccveeeeccccncncccnnnne
Subcommands in graphic editorcc.... ...
Subcommands in EDIT of generic library
Legal attributes of generic models
Components in PPLIB?cccevvereascrovessconcnns
Discrete levels in PPTLIB3cccccvceccees cene
Pailure modes in PTLIB3 cesecne teccscnnse
Components in HAZLB2 cecesesssssrscrenas
Discrete levels in HAZLB2c.cccc0e cevens .o
Pailure modes in HAZLB2 ceoenn ceenes cevene
List of file extensions ceecesorreecreoransn
List of different gate typesccvcvveen...
Input files for t:e PAUNET system coee
Files generated by PAUNETccccevvcvvcccccnns
Legal gate types in free format files
Legal gate types in fixed format files

Calculation types and their input data

Page 117

101
102
118
119
120
120
122
123
124

Page 118

LIST OF FPIGURES.

1.1 Block-diagram of RIKKEccciiiiiiennnennnnnns 9
1.2 A fault tree plotted by FISHOWccccievenvnnenn 12
2.1 Piping and instrumentation diagram

of a let down drum system 16
2.2 Orientation of a componentccciecieecerennnn 19
2.3 Pirst part of a let down systemc.0.. 22
2.4 Part of a let down systemcciiiieiiia... 24
2.5 The final let down systemc.cvceeerececnnnns 27
2.6 A fault tree for the event DRUM -> BURST

in separator 2. Model LDDRUM ceees 32
4.1 Initial sketch of a tank ...cccvcevvennnens esesse. 58
4.2 Orientation of the ports treesevesenssen 59
7.1 Graphic components in FTLIB3ccvtieennnnn 87
7.2 Graphic components in HAZLB2ccovevcerceveccccs 99
C.1 A fault tree file in free formatccccveevnen 121
C.2 A fault tree file in fixed £ormatoecevvnn. 123

C.3 Event failure and repair data filesc00c.. 125

C.4 Examples of network description files 126

Page 119
APPENDIX A: FILES IN RIKKE AND FAUNET.

Table A.1 List of file extensions.

Filename Content of file

* BIK Block Diagram / Draft Description
* . DIA Draft database

#.GCL Genetic Component Library

#.CMP Extracted (Packedg Component Model
#.LIB Extracted (Packed) Component Library
#.DGL Graphic Component Librar

#.GML Extracted Graphic Form(s§

* PFM Plant Punction/PFailure Model

* . PTR Fault Tree Structure

* . PTX Fault Tree Text

* PN FPault Tree Text (numeric code)

* FDA Failure and Repair Data (for PAUNET calculations)
* .CDR Consequence Diagram Structure
*.CDX Consequence Diagram Text

* _CDN Consequence Diagram Text (numeric code)
* ETR Event tree, from FIND

* ETX Event tree text

* HCB Flow Sheet (graphic code)

* HCF Pault Tree (graphic)

* HCD Consequence Diagram (graphic)

* HCC Cause Consequence Diagram (graphic)
* HCM Mini Fault Trees (graphic)

*.HCO Optional Graphic PFile

* ,PDA Picture Data (intermediate)

* . PTE Picture Text (intermediate)

* ,MOU Picture Log (intermediate)

* . LST Listing (intermediate)

* . TMP Temporary file used by varioues routines
*.CON RIKKE <=> PAUNET Conversion Table
*,DAT Pault tree in free format

* ,PLT Fault tree (FAUNET form

*.CPX Complex Events

* _PRT Pruned Pault Tree / Reduced tree

* ITR Input Tree (intermediate)

* RES Partial Result (intermediate)

*.CSR CUTSET - Result File

* TSR TIESET - Result File

*.EDA Event PFailure and Repair Data
*.CSG CUTSET -~ Grouped

*.TSG TIESET - Grouped

*,C3D CUTSET - Decomposed

*,TSD TIESET - Decomposed

*,CSE CUTSET - Evaluated

*.TSE TIESET - Evaluated

* . NET Network description

Note: * stands for Model or System-~-name
stands for Library/Component name

APPENDIX B:

Table B.1

FAULT TREE FILE CODES IN RIKKE.

List of different gate types.

Page 120

Code

Meaning

Graphic type

| vIl N+ HECHATOORCHITA"IE QT >

- - RV R

Normal event ('A PRIORI')
Normal event in mode 2 ('BAD')
Common-mode event

Spontaneous event

1
1
9
1

.FALSE. 4
Good state (latent failure in mode-2) 22
Halt on break-point 31
Impossible event (unlinked port in mode-2) 9
Latent failure 22
Normal state 22
Opened mode~2 loop 9
Positive state 22
Remaining state 26
.TRUE. 4
Unexpected event (unlinked port) 9
Working state 22
AND-gate (in mode-2) 1
Priority AND-gate 11
OR-gate 12
Priority OR-gate (in mode-2) 12
Internal event 1
External event 1
State caused by event 22
NOT (negation of state) 4
Dot (loop indicator) 27
Unspecified input (incomplete tree, but fixed) 28

END OF FILE

APPENDIX C:

FILES IN PAUNET.

Page 121

Table C.1 Input files for the FAUNET system.
Filename Content of file

* . DAT Pault tree in free format

* _PLT Pault tree

* .EDA Event Pailure and Repair Data
* NET Network description

Table C.2 Files generated by PAUNET.

Filename Content of file

*,CPX Complex Events

* _PRT Pruned Pault Tree / Reduced tree
* ITR Input Tree (intermediate)

* RES Partial Result (intermediate)
* ,CSR CUTSET - Result Pile

* . TSR TIESET - Result File

*.CSG CUTSET - Grouped

*.7SG TIESET - Grouped

*.CSD CUTSET - Decomposed

*.7SD TIESET - Decomposed

*.CSE CUTSET - Evaluated

*,TSE TIESET - Evaluated

Note: * stands for System-name

Page 122

C.1 Pree format fault tree file (*.DAT).

The fault tree file consist of three parts:

(1) The header record, containing the system identifier, max.
6 characters (needs not to be identical to the
file-name).

(2) A 1list of records, one for each gate in the tree. The
top-gate is normally entered first.

(3) PFinally an end of data marker.

An example of a fault tree file is shown in figure C.1. Here
the header contains the system-identifier "CADI".

The following records each define a gate, starting with the
top of the tree. The first character in the record is the
gate type. Valid gate types are 1listed in Table C.1.
Immediately following the gate type comes the gate-name. All

gates are indexed from 1000 to 2000, while events are indexed
from 1 to 999.

The second number in the record counts the number of inputs to
the gate. This number is limited to 12 (twelve), which means
that in practical examples, where more than 12 inputs are
wanted in a gate, then the gate must be split into two or more
smaller gates of the same type.

Following the input count comes a list of inputs to this gate.
The inputs may be events (number < 1000) or other gates
(number > 999). All the numbers in the gate record must be
separated by comma.

The "3$" sign in the last record indicates the end of the file.

CADI
+1000,5,1034,1035,1036,1037,1038
X1034,3,1029,2,16
+1035,%,10%0,1031,1024
X1036,3,7,20,1032
X1037,2,2,1033
X1038,5,16,17,21,1028,22
+1029,2,3,5
X1030,2,1023,20
X1031,2,7,19
+1032,%,2,1025,4
+1033,2,1026,1027
+1023,3,1,8,10
X1024,2,4,6
X1025,4,7,13,1518
X1026,2,11,12
+1027,2,16,21
;1028,2,2,7

Pigure C.1 A fault tree file in free format.

Page 123

Table C.3 Legal gate types in free format files.

Gate type Meaning

+ OR gate referred

0 OR gate *

X AND gate referred

x [small "x"] AND gate *

A AND gate (*

- NAND gate (may be used as a KOT gate)
M Majority gate (see below).

Special plot-marker (plotting postponed)

Note: These forms are converted to the preferred one.

C.1.1 Majority gates.

It is possible in the free format file to define a majority
gate collecting n out of m events as in the following example.

M2,1000,3,1,2,3

The number n must follow the type "M". Then comes the gate
number, the number m and finally the list of m inputs. The
gate 1000 in the example represents any (or-ed) combination of
2 out of 3 of the input events and-ed together. The line
above is equivalent to the following.

+1000,3,1010,1011,1012
X1010,2,1,2
X1011,2,1,3
X1012,2,2,3

The evaluation of the majority gate above.

The program FREEIN (command: FREE PORM) will convert any
fault tree in free format into the Tixed format needed by the
following programs in the FAUNET package. During the
.onversion all alternate gate types will be translated into
their preferred form, and the majority gates will |Dbe
evaluated.

The special plot marker, which consist of the character ""
followed Dby a gate number is used as an indicator to the tree
plotter (command: PFLTSHOW). This marker is skipped by all
other FPAUNET programs. It should occur in the file before the
gate itself is defined, and will in a tree plot postpone the
plotting of the gate from its first reference in the tree to a
later one or printed by itself. Hereby a fault tree occupying
more than one page may be well formed.

As an example we can refer to an example, where it was
necessary to enter 1055 as well as 1057 twice in the Dresden-3
fault tree in order to plot it as shown on the pages 24 to 26.

Page 124

C.2 Pixed format fault tree files (*.PLT).

The fault tree file in fixed format has the same structure as

the free format file. It equals the first record contains the
system identifier, maximum 6 characters.

The following gate-records are written in the PORTRAN-format
(A1,1414). The 1last record in the file starts with a
"$"-sign, optionally followed by a 4-digit number telling the
highest number allowed for internally created gates. We

recommend the user to omit this number, leaving the "$"-sign
alone in the record.

The set of legal gate types in a fixed format file is 1limited
to the following set:

Table C.4 Legal gate types in fixed format files.

Gate type Meaning
+ OR gate
X AND gate

- NAND gate (may be used as a NOT gate)

Special plot-marker (plotting postponed)

The fault tree file (CADI.DAT) in figure C.1 may be converted
to fixed format by the command:

FREEFORM SYSTEM CADI
The resulting file (CADI.FLT) is shown below:

CADI

+1000 5103%41035103610371038
X1034 31029 2 16

+1035 3103010311024

X1036 3 7 201032
X1037 2 21033
X1038 5 16 17 211028 22
+1029 2 3 §
X1030 21023 20
X10%1 2 7 19
+103%32 3 21025 4
+1033 210261027
+1023 3 1 8 10
X1024 2 6
X102 4 7 131518
X1026 2 11 12
+1027 2 16 2%
;1028 2 2 7

Figure C.2 A fault tree file in fixed format.

Page 125

C.3 Event data file (*.EDA).

The Event Failure and Repair Data file is format free. It
consist of three parts:

(1)

(2)

(3)

A header record containing the the system identifier,
maximum 6 characters. It must be identical to the
identifier in the fault tree file for the actual problem.
A list of records containing: The component (event)
number, calculation type, failure data, mean repair time
and test interval etc. All the numbers are separated by
comma (","). A 1list of possible calculation types is
shown in table C.5.

Finally an empty record, or a record containing a "O"
acting as an end-of-file indicator.

Table C.5 Calculation Types and their Input Data.

Calculation
type Meaning Inputs
1 Constant Pailure Probability (A) A*106
2 Exp. Pail. Distribution (rate=A) and
Exp. Repair Distr. (mean=B) A*106 and B
3 Exp. Pail. Distr.(rate=A) and
Const. Repair Time (B) A*106 and B
4 Exp. Pail. Distr.(rate=A) with

Const. Repair Time (B) and
Constant Test Interval (C) A*106 , B and C

The following figure shows an example of an Event Data file.

Page 126

BSS

11,2,2.,50. 240,2,0.1,20. 433,2,0.1,10.
12,2,2.,50. 250,2,0.1,20. 434,1,10000.
13,2,2.,50. 260,2,0.1,20. 610,2,10.,1.
14,2,2.,50. 361,2,0.5,2000. 620,2,10.,1.
15,2,2.,50. 362,2,10.,200. 7T10,1,100000.
21,2,2.,50. 363,2,0.5,2000. 811,2,0.1,100.
22,2,2.,50. 364,2 10.,200- 812,2,0.5,1.
23,2,2.,50. 371,2,0.5,2000. 821,2,0.1,100.
24,2,2.,50. 372,2,10.,200. 822,2,0.5,1.
25,2,2.,50. 381,2,0.5,2000. 831,2,0.1,100.
26,2,2.,50. 382,2,10.,200. 832,2,0.5,1.
31,2,2.,50. 383,2,0.5,2000. 841,2,0.1,100.
32,2,2.,50. 384,2,10.,200. 842,2,0.5,1.
33,2,2.,50. 411,2,0.1,10. 851,2,0.1,100.
34,2,2.,50. 412,2,0.1,10. 852,2,0.5,1.
51,2,2.,50. 413,2,0.1,10. 861,2,0.1,100.
52,2,2.,50. 414,1,10000. 862,2,0.5,1.
m,2,2.,50. 421,2,C.1,10. 871,2,0.1,100.
110,2,2.,50. 422,2,0.1,10. 872,2,0.5,1.
120,2,2.,50. 423,2,0.1,10. 901,2,0.1,100.
210,2,0.1,20. 424,1,10000. 902,2,0.5,1.
220,2,0.1,20. 431,2,0.1,10. 0

230,2,0.1,20. 432,2,0.1,10.

Pigure C.3 Bvent Pailure and Repair Data file.
(Prom Platz and Olsen, 1978).

Page 127

C.4 Netvork description (®*.NBT).

A netvork is described in a (format-free) network descriptian
file. This file consist of three parts:

(1) A header record containing the the system identifier,
maximum 6 characters.

(2) A list of records defining the network by its 1links. A
bidirectional 1link is described by the 1link-number
followved by the numbers of the connected nodes (separated
by connas*. A unidirectional 1link is described by a
minus ("-") followed by the link-number, the number of
the outgoing node and finally the number of the incoming
node.

(3) Pinally an empty record, or a record containing a "O0" as
an end-of-file indicator.

The link-numbers as well as <the node-numbers are used as
component (event) numbers in the fault tree produced as a
description of the wvanted cuts or paths in the network. We
therefore recommend the user to specify different numbers for
nodes and links. This a "must”™ in the case, where both nodes
and links are included in the analysis.

As an example, figure C.4 shows two network-files.

NBBEX?2 JBPIG1
-1,20,21 10,1,3
-2,20,21 11,3,4
-3,20,22 12,4,7
-4,21,23 13,7,8
-5,21,23 14,1,2
-6,22,23 15,2,5
-7,23,24 16,5,6
-8,23,24 17,6,8
-9,24,25 18'315
-10,23%,25 19,5,7
-11,25,27 0
-12,25,27

-13,25,27

-14,23,26

-15,26,27

-16,26,27

0

Pigure C.4 Examples of network description files.
(NBBEX2.NET and JBPIG1.NET).
(Prom Platz and Olsen, 1976).

http://NBBEX2.NET
http://JBFIG1.NET

Page 128

APPENDIX D: EVENT FAILURE AND REPAIR DATA USED IN FAUNBT.

Kind: 1 Constant failure probability p.

Form: <event>,1,p*106

Kind: 2 Exponential failure distribution with failure rate
lambda and exponential repair distribution with
mean repair time r.
Form: <event>,2,1ambda*106,r

Kind: 3 Exponential failure distribution with failure rate
lambda and constant repair time r.

Form: <event>,3,lambda*106,r

Kind: 4 Exponential failure distribution with failure rate
lambda, constant repair time r and constant test
interval i.

Form: <event>,4,1ambda*106,r,i

(event> stands for the actual event number (integer), while
the arguments p, lambda, r and i are all real numbers.

Noge that probabilities and failure rates are multiplied by
10°.

The data file (*.EDA or *.FDA) contains:

The system (model) name.
One record of data for each basic event.

Finally an empty record (or a 0) indicating the end of the
list.

N —
e e

(
(
(

Example: BMFT4
1,3,100.,0.5,50.55
2,1,100000.
%,4,80.,10.,672.,27415.3%

85,4,10.,100.,672.,3467.3

APPENDIX E:

Command

MODEL

WHAT

STOP

DRAPT
MAKE

FAULT
TEXT

FTPLOT

PTSUPER

PLOT

VIEW

PTSHOW
cur

Page 129

RIKKE COMMANDS AT A GLANCE.

Program
called

none

none

none

GRACE
LNKMOD

PTGEN
TEXTER

CCPLO?T

CCPLOT

PLOT

PLOT

TTTREE
FTCUT

Purpose

Allovs user to define or redefine which
model the system is to construct or make
use of.

To find the name of the plant model
currently being used.

Stops execution of RIKKE and terminates
a RIKKE session

To activate the drafting input program.

To build up a plant functional and
failure model.

To produce a fault tree.

To transfors fault tree text from
numeric form to a readable form.

To produce a plotting file containing a
fault tree as a series of A4 pages.

To produce a plotting file containing a
fault tree (not broken into A4 pages).

To send a plotting file to the
plotting device.

actual
To send a plotting file to a graphic
display screen.

To plot a fault tree on the typewriter.

To prune a fault tree of : ~nwanted event
types.

APPENDIX P:

Command Program
called
SYSTENM PAURET
PAUNRE?T PAUNET
CUTSET cuT
TIESET CUT
PATHSET cuT

CUTSET PRUNED
cuT

TIESET PRUNED

CcUT
PRURE CcUT
RESULT CUTRES

RESULT OP TIESET
CUTRES

DECOMPOSE CUTPIV

DECOMPOSE TIESET
CUTPIV

TREE CUTREE

TREE FROM TIESET
CUTREE

UNAVAILABILITY (USING

UNAVA

Page 130

PAUNET COMNMANDS AT A GLAKCE.

Purpose

Allows the user to define or redefine
the system file name for wvhich the
PAUNET calculations are to be evaluated.
Tells which files are available for this
system.

Tell the system file name and which
files are precently available for this
systea.

Calculate minimal cutsets of a fault
tree.

Calculate minimal tiesets of a fault
tree.

Equivalent to the command: TIESET.
Calculate minimal cutsets using a

previousely pruned fault tree as input.

Calculate ainimal tiesets using a
previousely pruned fault tree as input.

Perform a modularisation of a fault tree
and output the pruned fault tree
together with its list of complex
events.

Shov the result (count of cutsets) from
a previous calculation.

Shovw count of mainimal tiesets

previousely calculated.

Perform a pivotal decomposition of the
minimal cutsets previously calculated.
Perform a pivotal deconrosition of the

minimal tiesets previously calculated.

Convert ainisal
fault tree.

cutsets into a pruned

Convert minimal tiesets
fault tree.

T1ESET] [DECOMPOSED] [REPAIR]
Calculate unavailabilities, and
optionally failure intensities from

into a pruned

Note:

CHECK [DUAL]
TREECH

NBTPATH [LINKS/NODES]
TIENET

example:

PREEPORM [DUAL]

FREEIR
FLTSHOW TTTREE
PRTSHOW TTTREE

EVALUATE [TIESE?T]
CUTEV

GROUPING [TIESET]

CUTGRP
PRINT RIKUTL
Subcommand:
PILE-NAME

Page 131
cutsets or tiesets using failure data
for the primary events.

Arguments in brackets are optional.

Check consistency of a fault tree file

and calculate the maximum number of cut/
tiesets.

FROM 2a TO b
Calculate paths in a network (directed
or not) from node a to node b (both

entered as numbers) and optionally
output either the 1links passed, the
nodes passed or both 1links and nodes
(default).

NETPATH LINKS PROM 5 T0 6

Calculate the set of links passed in all
possible paths from node 5 to node 6.
The output is formed as a fault tree.

Convert a faunet fault tree written in
free format to fixed format fornm,
optionally producing the dual tree.

Plot a PAUNET
typevwriter.

fault tree on the

Plot a pruned PAUNET fault tree
typevriter.

on the

Evaluate the modularized cutsets
(default) ot tiesets completely and sort
the result.

Po divide the calculated cut/tiesets
into independant groups.

May be used to print the calculated
cut/tiesets on the typewriter.

Specify the wanted result by combining
the system name and the file type into
a file name.

Example: LDDRUM.CSR

Ares
Attribute .
Availability

Break option

Check
Circles .
Command all
Compatibility
Compatible .

Cut command

Decompose .
Dotted line
Draft databas

Bvaluate . .
Extension .

Pailure message

Failure model
Pault tree .

Fault tree analysis
Fault tree congtruction

Faunet . . .
Ptgen . . .
Ptplot . . .
Ptshow . . .
Ptsuper_plot
Fttext . . .

e

Component description

Generate a fault

Generic component

Genlid . . .
Gledit . . .
Grace . . .
Gralid . . .
Graphic . .
Graphic compo
Hardcopy . .
Help

Incompatibility

Incompatible . .

Library . .
Lines . . .
Link
Link by curso
Link by names
Link type .

Model L4 L L]

Option . . .
Orientation

[4
L4

r

ouco.oOo-oo

tree

L] e e - L] e L L]

Page 132

Peekhole
Piping diagram . . .
Plant component . .
Plant failure model
Plant flow sheet .
Plant function . .
Plant model . . .
Plot . . ¢« ¢+ ¢« &« &
Ports
Pruned fault tree

Reading type
Reliability calculations
Rotation

Scale« ¢ o ¢ o
Setup

Tieset ¢« « &« . &
Topevent
Tree L] L] L] L] L[] L] L] . L] L4

Unavailability
Upscaling

Vie' [. . o [}

21
10

28

10
1

59
28

70
48
19

19
18

48
10
48

48
19

11

Page 133

Rise National Lboratory Rise- M - [2480

Title and author(s)

Date
February 1985

2480

RIKKE bemrtmt or group
User's Manual

P. Haastrup, J.V.Olsen, J.R.Taylor,
Axel Damborg and N.K.Vestergaard

IGroup's own registrationd
number (s)

Rise-M-

133 pages + tables + illustrations

Abstract [copies to

RIKKE is a computer program for reliability and
safety analysis of process plants, electrical
systems ets. The program is available in a PDP-1
and a VAX varsion. The manual gives a descriptio[
of the use of the program as a tool in the hazar?
analysis of an actual process plant. Furthermore

the manual gives a summary of the principles of
building new components as parts of the existingr

libraries.

Availadble on request from Ris¢ Library, Risg National
Laboratory (Ris¢ Bibliotek), Forsggsanlsg Ris¢),
DK-4000 Roskilde, Denmark

Telephone: (0) 37 12 12, ext. 2262. Telex: 43116

e

