53 research outputs found

    A late role for a subset of neurogenic genes to limit sensory precursor recruitments in Drosophila embryos

    Full text link
    In Drosophila , mutations in a class of genes, the neurogenic genes, produce an excess of neurons. This neural hyperplasia has been attributed to the formation of more than the normal number of neuronal precursor cells at the expense of epidermal cells. In order to find out whether the neurogenic genes only act at this intial step of neurogenesis, we studied the replication pattern of the sensory organ precursor cells by monitoring BrdU incorporation in embryos mutant for Notch ( N ), Delta ( Dl ), mastermind ( mam ), almondex ( amx ), neuralized ( neu ), big brain ( bib ) and the Enhancer of split -Complex ( E ( spl )- C ). Using temperature sensitive alleles of two of the neurogenic genes, DI and N , we also induced an acute increase of replicating sensory precursors by shifting briefly to the restricted temperature. We have found that the loss of function of all the seven neurogenic loci that were tested causes an increase in replicating sensory precursor cells, consistent with the model that these neurogenic genes normally participate in the process of restricting the number of neuronal precursors. Whereas the temporal pattern of replication appeared normal in mutants of five of the seven neurogenic loci, in N and mam embryos replicating PNS cells are present beyond the time when they normally undergo replication. Experiments with colchicine suggest that many of these late replicating cells may be newly emerging precursors and probably not additional cell divisions of already recruited precursors. Thus, different neurogenic genes may be required over different periods of time for the specification of sensory precursor cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47511/1/427_2004_Article_BF00188736.pd

    High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma

    Get PDF
    Chemokines and their receptors are involved in tumourigenicity and clinicopathological significance of chemokines receptor expression in pancreatic adenocarcinoma (PA) is not fully understood. This study was conducted to determine patients' outcome according to the expressions of CXCR4, CXCR7 and HIF-1α after resection of PA. Immunohistochemistry for CXCR4, CXCR7 and HIF-1α expressions as well as cell proliferative index (Ki-67) was conducted in 71 resected (R0) PA and their 48 related lymph nodes (LN) using tissue microarray. CXCR4 and CXCR7 expressions were positively correlated to HIF-1α suggesting a potential role of HIF-1α in CXCR4 and CXCR7 transcription activation. Patients with CXCR4high tumour expression had shorter OS than those with low expression (median survival: 9.7 vs 43.2 months, P=0.0006), a higher risk of LN metastases and liver recurrence. In multivariate analysis, high CXCR4 expression, LN metastases and poorly differentiated tumour are independent negative prognosis factors. In a combining analysis, patients with CXCR4low/CXCR7low tumour had a significantly shorter DFS and OS than patients with a CXCR7high/CXCR4high tumour. CXCR4 in resected PA may represent a valuable prognostic factor as well as an attractive target for therapeutic purpose

    Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish

    Get PDF
    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome

    ppk23-Dependent Chemosensory Functions Contribute to Courtship Behavior in Drosophila melanogaster

    Get PDF
    Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila

    C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7

    Get PDF
    Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs

    From DNA to form: the achaete-scute complex.

    No full text

    The lateral line microcosmos

    No full text

    Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system

    No full text
    The primordium that generates the embryonic posterior lateral line of zebrafish migrates from the head to the tip of the tail along a trail of SDF1-producing cells. This migration critically depends on the presence of the SDF1 receptor CXCR4 in the leading region of the primordium and on the presence of a second SDF1 receptor, CXCR7, in the trailing region of the primordium. Here we show that inactivation of the estrogen receptor ESR1 results in ectopic expression of cxcr4b throughout the primordium, whereas ESR1 overexpression results in a reciprocal reduction in the domain of cxcr4b expression, suggesting that ESR1 acts as a repressor of cxcr4b. This finding could explain why estrogens significantly decrease the metastatic ability of ESR-positive breast cancer cells. ESR1 inactivation also leads to extinction of cxcr7b expression in the trailing cells of the migrating primordium; this effect is indirect, however, and due to the down-regulation of cxcr7b by ectopic SDF1/CXCR4 signaling in the trailing region. Both ESR1 inactivation and overexpression result in aborted migration, confirming the importance of this receptor in the control of SDF1-dependent migration
    corecore