238 research outputs found

    Attractive internal wave patterns

    Full text link
    This paper gives background information for the fluid dynamics video on internal wave motion in a trapezoidal tank.Comment: 2 pg, movie at two resolutions _low(Low-resolution) and _hr(High-resolution

    Attractive internal wave patterns

    Full text link
    This paper gives background information for the fluid dynamics video on internal wave motion in a trapezoidal tank.Comment: 2 pg, movie at two resolutions _low(Low-resolution) and _hr(High-resolution

    Evolution of the Leading-Edge Vortex over an Accelerating Rotating Wing

    Get PDF
    AbstractThe flow field over an accelerating rotating wing model at Reynolds numbers Re ranging from 250 to 2000 is investigated using particle image velocimetry, and compared with the flow obtained by three-dimensional time-dependent Navier-Stokes simulations. It is shown that the coherent leading-edge vortex that characterises the flow field at Re~200-300 transforms to a laminar separation bubble as Re is increased. It is further shown that the ratio of the instantaneous circulation of the leading-edge vortex in the accel-eration phase to that over a wing rotating steadily at the same Re decreases monotonically with increasing Re. We conclude that the traditional approach based on steady wing rotation is inadequate for the prediction of the aerodynamic performance of flapping wings at Re above about 1000

    Three-dimensional advective--diffusive boundary layers in open channels with parallel and inclined walls

    Get PDF
    We study the steady laminar advective transport of a diffusive passive scalar released at the base of narrow three-dimensional longitudinal open channels with non-absorbing side walls and rectangular or truncated-wedge-shaped cross-sections. The scalar field in the advective--diffusive boundary layer at the base of the channels is fundamentally three-dimensional in the general case, owing to a three-dimensional velocity field and differing boundary conditions at the side walls. We utilise three-dimensional numerical simulations and asymptotic analysis to understand how this inherent three-dimensionality influences the advective-diffusive transport as described by the normalised average flux, the Sherwood ShSh or Nusselt numbers for mass or heat transfer, respectively. We show that ShSh is well approximated by an appropriately formulated two-dimensional calculation, even when the boundary layer structure is itself far from two-dimensional. This important result can significantly simplify the modelling of many laminar advection--diffusion scalar transfer problems: the cleaning or decontamination of confined channels, or transport processes in chemical or biological microfluidic devices

    Three-dimensional visualization of the interaction of a vortex ring with a stratified interface

    Get PDF
    The study of vortex-ring-induced stratified mixing has long played a key role in understanding externally forced stratified turbulent mixing. While several studies have investigated the dynamical evolution of such a system, this study presents an experimental investigation of the mechanical evolution of these vortex rings, including the stratification-modified three-dimensional instability. The aim of this paper is to understand how vortex rings induce mixing of the density field. We begin with a discussion of the Reynolds and Richardson number dependence of the vortex-ring interaction using two-dimensional particle image velocimetry measurements. Then, through the use of modern imaging techniques, we reconstruct from an experiment the full three-dimensional time-resolved velocity field of a vortex ring interacting with a stratified interface. This work agrees with many of the previous two-dimensional experimental studies, while providing insight into the three-dimensional instabilities of the system. Observations indicate that the three-dimensional instability has a similar wavenumber to that found for the unstratified vortex-ring instability at later times. We determine that the time scale associated with this instability growth has an inverse Richardson number dependence. Thus, the time scale associated with the instability is different from the time scale of interface recovery, possibly explaining the significant drop in mixing efficiency at low Richardson numbers. The structure of the underlying instability is a simple displacement mode of the vorticity field.Support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and through the Engineering and Physical Sciences Research Council (EPSRC). Additional support has been provided by the EPSRC Mathematical Underpinnings of Stratified Turbulence grant EP/K034529/1

    A hierarchical decomposition of internal wave fields

    Get PDF
    • …
    corecore