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We study the steady laminar advective transport of a diffusive passive scalar re-
leased at the base of narrow three-dimensional longitudinal open channels with non-
absorbing side walls and rectangular or truncated-wedge-shaped cross-sections. The
scalar field in the advective–diffusive boundary layer at the base of the channels is
fundamentally three-dimensional in the general case, owing to a three-dimensional
velocity field and differing boundary conditions at the side walls. We utilise three-
dimensional numerical simulations and asymptotic analysis to understand how this
inherent three-dimensionality influences the advective-diffusive transport as described
by the normalised average flux, the Sherwood Sh or Nusselt numbers for mass or heat
transfer, respectively. We show that Sh is well approximated by an appropriately
formulated two-dimensional calculation, even when the boundary layer structure is
itself far from two-dimensional. This is a key and novel results which can significantly
simplify the modelling of many laminar advection–diffusion scalar transfer problems.
The different transport regimes found depend on the channel geometry and a charac-
teristic Péclet number Pe based on the ratio of the cross-channel diffusion time and
the longitudinal advection time. We develop asymptotic expressions for Sh in the
various limiting regimes, which mainly depend on the confinement of the boundary
layer in the lateral and base-normal directions. For Pe� 1 we recover the classical
Lévêque solution with a cross-channel-averaged shear rate γ1/3, Sh ∝ γ1/3Pe1/3, for
both geometries despite strongly curved boundary layers; for parallel walls a sec-
ondary regime with Sh ∝ Pe1/2 is found for Pe� 1. In the case of truncated wedge
channels, further regimes are identified owing to curvature effects, which we cap-
ture through a curvature-rescaled Péclet number Peβ = β2Pe, with β the opening
angle of the wedge. For Pe1/2 � β � 1, the Sherwood number appears to follow

Sh ∼ β3/4Pe1/16β . In all cases, we offer a comparison between our three-dimensional
simulations, the asymptotic results and our two-dimensional simplifications, and can
thus quantify the error in the flux from the simplified calculations. Our findings are
relevant to heat and mass transfer applications in confined U-shaped or V-shaped
channels such as for the decontamination and cleaning of narrow gaps or transport
processes in chemical or biological microfluidic devices.
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1. Introduction

The advective–diffusive transfer of a scalar (e.g. mass or heat) at solid–liquid boundaries in
laminar channel flows is a fundamental transport phenomenon found in numerous applications.
Mass transfer applications include: chemical (Zhang et al., 1996; Gervais and Jensen, 2006;
Kirtland et al., 2009) and biological (Vijayendran et al., 2003; Squires et al., 2008; Hansen et al.,
2012) microfluidic reactors and sensors, porous microfluidic channels and membranes (Dejam,
2019; Kou and Dejam, 2019), membrane extraction techniques (Jönsson and Mathiasson, 2000;
Marczak et al., 2006), micro-mixers (Kamholz et al., 1999; Ismagilov et al., 2000; Kamholz and
Yager, 2001, 2002; Stone et al., 2004; Jiménez, 2005; Capretto et al., 2011), membraneless elec-
trochemical fuel cells (Ferrigno et al., 2002; Cohen et al., 2005; Braff et al., 2013), cross-flow
membrane filtration Porter (1972); Bowen and Jenner (1995); Visvanathan et al. (2000); Hert-
erich et al. (2015), crystal dissolution (Bisschop and Kurlov, 2013), aquifer remediation (Borden
and Kao, 1992; Dejam et al., 2014; Kahler and Kabala, 2016), and cleaning Wilson (2005);
Fryer and Asteriadou (2009); Lelieveld et al. (2014); Pentsak et al. (2019) and decontamination
Fitch et al. (2003); Settles (2006) in channels. Heat transfer applications include: film cooling
(Acharya and Kanani, 2017), heat exchangers (Kakaç and Liu, 2002; Ayub, 2003), and cooling
and heating in micro-channels (Sobhan and Garimella, 2001; Avelino and Kakaç, 2004). Deter-
mining and predicting the advection-enhanced scalar flux at the transfer boundary as a function
of geometry, flow and scalar properties is highly desired in these problems. It allows assessment
of the performance of the overall scalar transport. Also, scalar transfer at the boundary is often
a critical rate-limiting step compared to other processes, particularly for mass transfer owing to
low mass diffusivities compared to advection or reaction rates as commonly found in applications
(e.g. Gervais and Jensen, 2006; Squires et al., 2008; Kirtland et al., 2009).

Solving the scalar transport problem in high-Péclet number flows near boundaries was pio-
neered by the theoretical works of Graetz (Graetz, 1885), Nusselt (Nusselt, 1916) and Lévêque
(Lévêque, 1928) for two-dimensional problems. They give analytical or scaling predictions for
the scalar flux and the associated non-dimensional transfer coefficient: the Sherwood and Nus-
selt numbers for mass and heat transfer, respectively. Mass transfer problems have benefited
from progress in the understanding of heat transfer (e.g. Bejan, 2013), since heat and mass
transfer problems are equivalent when both scalars are passive or have the same properties.
Henceforth, we refer to the generic scalar non-dimensional transfer coefficient as the Sherwood
number, Sh, for simplicity, as we assume a passive scalar in this study. This assumption implies
that the scalar transport equation and the governing equation for the flow are not fully coupled,
such that the flow is independent of the tracer concentration, whereas the concentration field
depends on the flow field. Thus, buoyancy or temperature changes that could affect the flow field
are beyond the scope of this study. Nevertheless, our results apply to analogous heat transfer
problems provided that the temperature difference is sufficiently small. We will revisit these
assumptions and their effect on the results in section 7.

Although numerical simulations can now solve almost any scalar transport problem with com-
plex boundary conditions or geometries, the ease of use of simple theoretical predictions is still
highly valuable for a broad range of applications. Theoretical models mostly rely on the key,
widely-used simplifying assumption that the scalar transport problems modelled can be ap-
proximated by two-dimensional problems. Transfer problems in steady axisymmetric channel
flows with uniform lateral boundary conditions (e.g. Dirichlet or Neumann) can directly use the
two-dimensional axisymmetric theoretical results of Graetz: Sh ∝ ReαScβ(D̂/L̂)γ (e.g. Bejan,
2013), with Re the Reynolds number, Sc the Schmidt number, and D̂/L̂ the ratio of the channel
diameter and the length of the scalar transfer area. (Throughout this paper, hats denote dimen-
sional quantities and dimensionless quantities remain undecorated.) The positive exponents α,
β and γ vary depending on the flow profile (e.g. uniform or shear flow) and regime (laminar or
turbulent), the wall roughness and whether the diffusive and momentum boundary layers are full
developed or not. Non-axisymmetric three-dimensional problems, such as rectangular channel
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flows, also rely on empirical or asymptotic correlations based on Graetz’ two-dimensional results
by modifying the Sherwood number such that: Sh ∝ ReαScβ(D̂h/L̂)γ (e.g. Gekas and Hall-
ström, 1987; Bowen and Jenner, 1995). The three-dimensional variations of the scalar field from
a two-dimensional axisymmetric profile are thus captured by the ratio (D̂h/L̂)γ in the relation-
ship above, where the hydraulic diameter D̂h accounts for non-circular channel cross-section.
The key underlying assumption allowing non-axisymmetric three-dimensional problems to be
modelled as two-dimensional axisymmetric problems is that the scalar boundary condition is
uniform, i.e. not mixed, at the side walls. This assumption has proven useful to many mass (e.g.
reviews Gekas and Hallström, 1987; Bowen and Jenner, 1995) and heat (e.g. reviews Sobhan
and Garimella, 2001; Ayub, 2003; Avelino and Kakaç, 2004) transfer problems.

Three-dimensional channel flows with mixed or differing scalar boundary conditions at the
side walls can also be simplified to two-dimensional planar problems provided that the side
walls with different boundary conditions have a negligible effect on the overall transfer flux. This
assumption is typically used when channel widths are larger than heights (e.g. Squires et al.,
2008; Braff et al., 2013). Two-dimensional planar problems can then use advanced mathematical
techniques such as potential flow and conformal mapping (Bazant, 2004; Choi et al., 2005), which
provide analytical or semi-analytical solutions for any complex (planar) geometries.

However, not all transport problems can be a priori reduced to simple axisymmetric or pla-
nar two-dimensional problems. Many problems possess three-dimensional flow and scalar fields
owing to three-dimensional geometries and differing lateral boundary conditions, thus rendering
analytical progress intractable. The main objective of this study, to predict the scalar flux and
the Sherwood number as a function of the flow, scalar properties and geometry, requires us
to analyse the impact of three-dimensional effects. We focus on three-dimensional transport
problems in laminar steady fully-developed longitudinal open channel flows with generic rectan-
gular or truncated wedge geometries. As depicted in figure 1, we study the case where we have
different scalar boundary conditions at the side walls with: fixed Dirichlet boundary condition
at the base of the channel, and no-flux boundary condition on all other boundaries. Transport
occurs at high Péclet numbers such that a scalar boundary layer develops from the base of the
channel. We define the channel aspect ratio as the ratio of the characteristic channel ‘height’ Ĥ,
in the direction perpendicular to the base of the channel, to the characteristic channel width ŵ,
in the lateral direction. Three-dimensional effects are more significant when the channel aspect
ratio is large and the scalar boundary layer is narrowly confined in the lateral direction. We
describe these geometries as ‘open channels’ in the sense that when the channel has a finite
height a free-slip boundary condition is assumed at the boundary opposite the base, and require
this boundary to have a width larger or equal to that of the base. As illustrated in figure 1, the
contour lines of the scalar field in cross-sections of the channels can be strongly curved, whilst
the profiles develop in the longitudinal direction. This is due to the no-slip and no-flux boundary
conditions (for the velocity and scalar, respectively) on the near side walls.

The problem considered here is a complex three-dimensional transport problem which has
received little attention in the literature for various reasons. For example, many engineering
applications in heat and mass transfer seek to maximise the interfacial transfer and thus tend to
use geometrical design with aspect ratios corresponding to a “thin layer”, such that the width
of the channel is much larger than its height ŵ � Ĥ. A large number of studies in the heat and
mass transfer literature have thus focussed on enhancing the scalar transfer (i.e. the Sherwood
number, Sh, or the Nusselt number) in the small aspect ratio limit Ĥ/ŵ � 1. However, the
main novelty of our study is to focus on the opposite limit, Ĥ/ŵ � 1 or the “narrow channel”
limit, where Sh is naturally reduced due to confinement effects. This is less attractive for most
engineering applications, which may explain why much less research has been done in the narrow
channel limit. Importantly, in the narrow channel limit traditional two-dimensional approaches
(e.g. Graetz, 1885; Nusselt, 1916; Lévêque, 1928; Gekas and Hallström, 1987; Bowen and Jenner,
1995; Sobhan and Garimella, 2001; Ayub, 2003; Avelino and Kakaç, 2004; Squires et al., 2008;
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Figure 1: Schematic diagram of the scalar transfer problem in a narrow channel flow with a
‘truncated wedge’ profile comprising a flat bottom and inclined walls. The shaded
region at the base of the channel (yellow) represents the source of the scalar. The
arrows at the left-hand end of the sketch show the three-dimensional profile of the
velocity field and the enlargement of the section just beyond the start of the source of
scalar shows the three-dimensional structure of the developing scalar boundary layer.
A real-life example would be the mass transfer from a flat viscous contaminant droplet
trapped in a gap or crack (Landel et al., 2016).

Braff et al., 2013; Bejan, 2013; Dejam et al., 2014; Kou and Dejam, 2019; Dejam, 2019) that
generally work in the thin layer limit cannot be used a priori since the flow and scalar fields are
both inherently three-dimensional. This is the central point that motivates our study and which
should be of interest to interfacial transfer problems where three-dimensional effects cannot be
neglected.

The scenario shown in figure 1 closely models mass transfer applications in narrow spaces such
as the cleaning and decontamination of gaps, cracks and fractures. This kind of cleaning prob-
lems exist in most industrial activities and are of particular concern in the food (Wilson, 2005;
Fryer and Asteriadou, 2009; Lelieveld et al., 2014), chemical (Pentsak et al., 2019), pharmaceuti-
cal and cosmetic industries, where purity, hygiene and cleanliness are essential. This scenario is
also relevant to the decontamination of toxic liquid materials trapped in confined channels where
the flow is laminar (Fitch et al., 2003; Settles, 2006). There are also potential applications to the
pore-scale modelling of mass transfer phenomena in porous media, for instance in the context
of aquifer remediation (Borden and Kao, 1992; Kahler and Kabala, 2016), if the micropores
have a rectangular or truncated-wedge geometry. Another application is for the transport of
ions in membraneless electrochemical cells. In this last case, to obtain the ion flux and deduce
the current produced by the fuel cell, Braff et al. (2013) assumed a two-dimensional plug flow
between electrodes in large aspect ratio channels in order to simplify the ion transport problem.
However, the laminar flow in this geometry is fundamentally three-dimensional, also resulting
in a three-dimensional ion concentration field owing to differing boundary conditions at the side
walls. Our study provides a posteriori justification for the two-dimensional assumption made by
Braff et al. (2013) and quantifies the associated error. The impact of three-dimensional effects
has also been reported in microfluidic channels such as the T-sensor (Kamholz et al., 1999;
Ismagilov et al., 2000; Kamholz and Yager, 2001, 2002; Stone et al., 2004). Jiménez (2005)
showed with numerical and asymptotic techniques that shear flows near the no-flux and no-slip
solid boundaries at the side walls lead to wall boundary layers. His results confirmed the power-
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laws found by Kamholz and Yager (2002) for the far-field region but not the initial square-root
power-law. Jiménez (2005) also observed that, compared to the well-known case of longitudinal
diffusion in a tube (‘Taylor dispersion’; Taylor, 1953), the impact of the wall boundary layers
on the effective mass transport is weak, the spreading rate changing by less than 5 % between
the near and far-field regions.

To achieve our objective of understanding mass transport, we use asymptotic analysis and
numerical simulations to determine the main impact of three-dimensional effects. We seek to
elucidate the different regimes that exist and what controls the transition between them, and
to demonstrate that in each case an appropriate two-dimensional model can be developed that
provides a good approximation to Sh. These findings have important theoretical and prac-
tical implications. Theoretically, it could enable the use of more advanced two-dimensional
mathematical techniques in the case of more complex longitudinal profiles of the channel geom-
etry (Bazant, 2004; Choi et al., 2005). Practically, it enables computation of transfer fluxes in
complex three-dimensional applications using simpler and faster techniques, whilst having clear
estimates of the error made. This is particularly useful for end-users who may not have access
to sophisticated computational tools or methods.

We begin by defining the problem in §2. In §3 we solve Stokes’ equation to obtain an analyt-
ical solution for the three-dimensional velocity field in rectangular channels with parallel walls
and truncated-wedge channels with angled walls. We introduce the three-dimensional scalar
transport problem and a two-dimensional cross-channel averaged formulation in §4. For chan-
nels with parallel walls, we use scaling arguments to obtain similarity solutions for the flux in
cases where the diffusive boundary layer is much thinner (§5.1) or much thicker (§5.2) than
the channel width. In §5.3, vertical confinement effects are studied through a depth-averaged
advection–diffusion equation. In §5.4 and §5.5, three-dimensional numerical solutions of the
transport problem demonstrate that two-dimensional results give accurate predictions for the
Sherwood number across all Péclet numbers, including those where asymptotic approaches are
not valid. In §6.1, we study the thin boundary layer regime for the truncated wedge geometry
and show asymptotically that the opening wedge geometry leads to a small increase in the flux
compared to the parallel wall geometry. In §6.2, thick boundary layers are studied for the wedge
geometry, revealing a much more complex behaviour due to the impact of the opening angle
on diffusion through curvature effects and advection. In §6.3, vertical confinement effects are
studied for the truncated wedge geometry. In §6.4 and §6.5, three-dimensional numerical results
for the truncated wedge geometry show that appropriate two-dimensional results give accurate
predictions for the mass transfer in this geometry across all Péclet numbers studied and for small
opening angles. A more complex dependence with Péclet number and geometry is found for the
thick boundary layer regime. We also demonstrate the importance of a curvature-rescaled Péclet
number in this regime. In §7, we discuss implications of our results for practical applications
such as cleaning and decontamination in confined channels. In §8 and table 2, we summarize all
our scaling and asymptotic results for the Sherwood number in the various regimes identified.
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Figure 2: Schematic of advection–diffusion problem for a passive scalar of concentration ĉ. Top
row: rectangular channel geometry with parallel walls. Bottom row: truncated-wedge
geometry with angled walls. (a) Cross sections with flow boundary conditions. (b)
Cross sections at 0 < x̂ < L̂ with concentration boundary conditions. We impose
ĉ = ĉb at the channel base for 0 < x̂ < L̂ (dashed lines); typical diffusive boundary
layer of the concentration field (thickness δ̂) shown in light grey. (c) Side views at
ẑ = 0 (top) and θ = 0 (bottom) with boundary conditions; typical velocity field û
shown with arrows.
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2. Model description

We model the steady advective–diffusive transport of a passive scalar released from an area of
length L̂ in the flow direction and width ŵ. The release area, at the base of an infinitely long
channel, is assumed to have zero thickness and have no effect on the velocity field. We study
two generic three-dimensional geometries: a rectangular channel with parallel walls of arbitrary
width ŵ and arbitrary height Ĥ (figure 2, top row); and a channel forming a truncated wedge
with a base in the form of an arc of a circle and flat side walls (figure 2, bottom row). (Here
we use the term ‘height’ to represent the normal distance between the base and its opposite
boundary or ‘top boundary’ without reference to the direction of gravity.) The opening angle
of the wedge is β > 0 and the arc length at the base of the channel is ŵ = r̂iβ, with r̂i the
truncation radius. In this study, we generally focus on the case of narrow channels, ŵ � Ĥ.
However, our problem formulation is sufficiently general so that we are also able to discuss some
results for ŵ ∼ Ĥ and ŵ � Ĥ.

For rectangular channels with parallel walls, we use Cartesian coordinates (x̂, ŷ, ẑ), where x̂
denotes the streamwise coordinate, ŷ the direction normal to the channel base, and ẑ the cross-
channel direction. The origin O of the axes is placed at the intersection of the planes x̂ = 0, the
onset of the release area, ŷ = 0, the base of the channel, and ẑ = 0, the channel mid-plane. We
refer to this geometry as a parallel-wall channel hereafter.

For truncated wedges with angled walls, we use cylindrical coordinates (x̂, r̂, θ), where x̂
denotes the streamwise coordinate, r̂ the direction perpendicular to the base of the channel, θ
the azimuthal direction. The origin O is placed at the intersection between the plane x̂ = 0,
the onset of the area of release, and the axis r̂ = 0, the edge of the wedge before truncation.
For small angles β, the curvature of the base could be neglected and the base of the channel
considered flat, thus approximating the channel sketched in figure 1. We refer to this geometry
as a truncated wedge hereafter.

The steady low-Reynolds-number open flow (see §3) in either form of channel is taken as uni-
directional and independent of x̂. The cross-sectional structure is controlled by the combination
of the no-slip boundary conditions (see figure 2(a)) on the side walls and base of the channel,
and an assumed stress-free condition at the top located at ŷ = Ĥ or r̂ = r̂i + Ĥ. The top
boundary condition is an approximation for a liquid–gas interface, which could be curved due to
surface tension effects. Surface tension and curvature effects at the top boundary are neglected
in this study.

The passive scalar transport with concentration ĉ is modelled using a steady advection–
diffusion equation (see §4). The area of release has a fixed concentration ĉb > ĉ∞ ≥ 0 (with ĉ∞ a
fixed background concentration) over the region given by 0 < x̂ < L̂, ŷ = 0 and −ŵ/2 < ẑ < ŵ/2
for parallel-wall channels. Similarly, the area of release for truncated wedges is over 0 < x̂ < L̂,
r̂ = r̂i and −β/2 < θ < β/2. These regions are shown in figure 2(b,c) for parallel-wall channels
(top row) and wedges (bottom row), respectively. All the channel walls have a no-flux boundary
condition, except for the area of release. In cases where we consider an infinite fluid layer thick-
ness, we assume ĉ→ 0 at ŷ → +∞ or r̂ → +∞. Otherwise, for a finite fluid layer thickness, we
impose a no-flux boundary condition at ŷ = Ĥ or r̂ = r̂i + Ĥ. Upstream, we impose ĉ→ ĉ∞ for
x̂→ −∞, and downstream, ∂ĉ/∂x̂→ 0 for x̂→ +∞.

3. Flow field

We assume an incompressible Stokes’ flow. Since the tracer is assumed passive, the governing
equation for the fluid flow is independent of the tracer concentration. From the boundary
conditions shown in figure 2, by symmetry, the flow field has only a streamwise component û,
which depends on ŷ and ẑ (respectively r̂ and θ for truncated wedges). The flow is driven by a
constant streamwise gradient Ĝ = ∂P̂ /∂x̂ < 0 in the non-hydrostatic component of the pressure
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P̂ , which could be created by gravity for instance. Thus, the flow is three-dimensional in both
geometries. Since we want to analyse three-dimensional effects on the scalar transport, it is
important to capture the dependence of the flow with both coordinates. We non-dimensionalise
spatial variables with the channel width or base arc length ŵ, the length scale for the flow at
the channel base,

y =
ŷ

ŵ
, z =

ẑ

ŵ
, r =

r̂ − r̂i
ŵ

=
r̂

ŵ
− β−1, and H =

Ĥ

ŵ
, (1)

with r the distance from the base of the truncated wedge, similar to y. (Since the flow is indepen-
dent of x̂, we defer its non-dimensionalisation until §4.) All velocities are non-dimensionalised
with the characteristic velocity Û0 = −Ĝŵ2/(12µ̂) > 0, with µ̂ the dynamic viscosity. The
factor of 1/12 preserves the intuitive physical meaning of the cross-channel averaged velocity in
channels with parallel walls far away from the base.

3.1. Flow field in channels with parallel walls

The dimensionless Stokes equation for the flow in channels with parallel walls is

∂2u

∂y2
+
∂2u

∂z2
= −12, (2)

for −1/2 < z < 1/2, 0 < y < H, with boundary conditions (figure 2, top row)

u(y = 0, z) = 0,
∂u

∂y
(y = H, z) = 0, u(y, z = ±1/2) = 0. (3)

The solution of this inhomogeneous problem is described by the infinite series

u(y, z) = 12Hy − 6y2 −
+∞∑
n=0

Cn sin(λny) cosh(λnz), (4)

where the eigenvalues λn and coefficients Cn are, for all integers n ≥ 0,

λn =
2n+ 1

2H
π, Cn =

192H2

π3(2n+ 1)3 cosh (λn/2)
. (5)

The velocity (4) is shown in figure 3(a) for H = 5, truncated after 1000 terms. The flow is clearly
three-dimensional near the base of the channel owing to the influence of the solid boundaries on
three sides. However, for 1� y ≤ H, the influence of the solid base decreases and the velocity
field tends to a two-dimensional Poiseuille profile

uP (z) =
3

2

(
1− 4z2

)
, (6)

valid only for H � 1. For y � 1, the flow is influenced by the base and u ≈ γy, where
γ = γ̂/(Û0/ŵ) is the dimensionless shear rate at y = 0. In general, the shear rate is

γ(z) =
∂u

∂y

∣∣∣∣
y=0

= 12H −
+∞∑
n=0

Cnλn cosh(λnz). (7)

The dependence of γ with z is important for H & 1. For H � 1, γ is uniform and approaches
the semi-parabolic Nusselt film limit in the interior of the channel, owing to vertical confinement
effect, with a dependence with z limited to the corners, |z| → 1/2. Although (7) contains H as
a parameter, for H > 1 the cross-channel average of the shear rate appears to be independent
of H and approaches γ ≈ 3.26 asymptotically rapidly (see figure 3(a), appendix A). This is
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related to the fact that we impose a constant streamwise pressure gradient to drive the flow in
the channel.

We also plot the cross-channel averaged velocity u, with · =
∫ 1/2
−1/2 · dz, in figure 3(c) (solid

grey line), along with the two asymptotic limits: u ∼ γy for y � 1 and u ∼ 1 for y � 1. When
analysing the scalar transport in the next sections, we will decompose the velocity such that
u = u+u′, where u = u(y) and u′ = u′(y, z). Thus, three-dimensional effects related to the flow
are contained in the cross-channel variation velocity u′.

3.2. Flow field in a truncated wedge channel

The dimensionless Stokes equation for the flow in truncated wedge channels is(
∂2u

∂r2
+

1

r + β−1
∂u

∂r
+

1

(r + β−1)2
∂2u

∂θ2

)
= −12, (8)

for 0 < r < H, −β/2 < θ < β/2, with boundary conditions (figure 2, bottom row)

u(r = 0, θ) = 0,
∂u

∂r
(r = H, θ) = 0, u(r, θ = ±β/2) = 0. (9)

Similar to parallel channels (see §3.1), the solution for the velocity is three-dimensional,

u(r, θ) = 6(H + β−1)2 ln(1 + βr)− 3r(r + 2β−1)−
+∞∑
n=0

Sn sin (χn ln(1 + βr)) cosh(χnθ), (10)

where the eigenvalues χn and the coefficients Sn are, for all integers n ≥ 0,

χn =
(2n+ 1)

2 ln(1 + βH)
π, (11)

Sn =
192β−2

(
(2n+ 1)π ln2(1 + βH) + 4(−1)n(1 + βH)2 ln3(1 + βH)

)
(2n+ 1)2π2

(
(2n+ 1)2π2 + 16 ln2(1 + βH)

)
cosh(χnβ/2)

. (12)

In figure 3(b) we show contour plots of the velocity (10) in a channel with β = 0.1, H = 5
(see table 3 in appendix B for the number of eigenvalues used). For small opening angles, the
flow field is similar to parallel channels (figure 3a). Far away from the top and base boundaries
but closer to the side walls, for (βr + 1)� r � H, (8) simplifies to ∂2u/∂θ2 = −12(r + β−1)2,
which gives, at leading order,

uW (r, θ) =
3

2
(βr + 1)2

(
1− 4

θ2

β2

)
. (13)

In contrast with the far-field velocity in parallel channels (see (6)), the far-field velocity uW in
truncated wedges remains three-dimensional, except in the limit β � 1/r � 1.

We plot in figure 3(c,d) the cross-channel averaged velocity u, with · = β−1
∫ β/2
−β/2 · dθ, for

opening angles β = 0.01 (black solid line), β = 0.1 (black dash-dotted line), and β = 0.2 (black
dashed line) for H = 5 (c) and H = 1000 (d). Note that the noticeable change in slope for
u near r = 5 for β = 0.1 and 0.2 is due to the no-stress boundary condition at the top. Near
the base, for r � 1, u ≈ γ(θ)r, similar to parallel channels, whilst in the far field u ∼ (βr)2,
characteristic of a far-field flow in a narrow wedge. The shear rate at the base of the channel is
given by

γ(θ) =
∂u

∂r

∣∣∣∣
r=0

= 12H + 6βH2 −
+∞∑
n=0

Snχnβ cosh(χnθ). (14)

The dependence on θ vanishes in the interior of the channel for H � 1, owing to radial confine-
ment effects, where it is limited to the corners, |θ| → β/2. The cross-channel average γ depends
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Figure 3: Contour plots of the velocity u in (a) a parallel channel (H = 5) following (4), and (b)
a wedge (β = 0.1, H = 5) following (10). (c) Vertical (y-) and radial (r-) profiles of
the cross-channel averaged velocity u for both geometries with H = 5. The Lévêque
approximation u = γy (dotted line) uses (7). (d) Plot of u in wedges, and in parallel
channels (dotted line) for comparison. The far-field velocity at small angles uW uses
(13) (corresponding grey curves closely following the black curves for r > 1).
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on β and H. For β → 0, H � 1, γ rapidly approaches the value for parallel channels: γ ≈ 3.26.
For larger β, H ≤ 100, γ is approximately: 3.47 for β = 0.1, 4.00 for β = 0.3, and 8.68 for β = 1,
see also appendix A and figure 3(b).

We will use the decomposition u = u + u′, with u = u(r) and u′ = u′(r, θ)), in the next
sections to study the impact of the three-dimensional cross-channel azimuthal variations u′ on
scalar transport in wedges.

4. Scalar transport

As noted in §1, the objective of this work is to determine the impact of three-dimensional effects
on the flux of a passive scalar released from the base of a channel flow in the two geometries
described in figure 2. The steady transport of a passive scalar is governed by the general
advection–diffusion equation, assuming Fick’s law for molecular diffusion. We focus on the case
where the scalar concentration field forms a slender diffusive boundary layer that develops in

the x̂ direction such that δ̂/L̂ = Pe
−1/2
L = (ÛδL̂/D̂)−1/2 � 1, with δ̂ a characteristic diffusive

boundary layer thickness, Ûδ a characteristic streamwise velocity at ŷ ∼ δ̂, and D̂ the scalar
diffusivity. This implies that streamwise diffusion is negligible (Bejan, 2013). As in (1), we use
ŵ and Û0 as non-dimensionalising quantities. We also use the following non-dimensionalisation

x =
x̂

ŵPew
, L =

L̂

ŵ
, δ =

δ̂

ŵ
, and c =

ĉ− ĉ∞
ĉb − ĉ∞

, (15)

where x̂ has been rescaled with the Péclet number Pew = Û0ŵ/D̂. We choose ŵ as the char-
acteristic length scale for the transport problem since the ratio between the diffusive boundary
layer thickness δ̂ and the gap width ŵ is key to describe the different regimes for the scalar
transport and resulting flux. The advection–diffusion equation for parallel channels is then

u
∂c

∂x
=
∂2c

∂y2
+
∂2c

∂z2
, (16)

for 0 < x < L/Pew, 0 < y < H, |z| < 1/2, with boundary conditions (figure 2)

c(x = 0, y, z) = 0, (17a)

c(x, y = 0, z) = 1, c(x, y → +∞, z)→ 0 or
∂c

∂y
(x, y = H, z) = 0, (17b–d)

∂c

∂z
(x, y, z = ±1/2) = 0. (17e,f )

For truncated wedge channels, the governing advection–diffusion equation is

u
∂c

∂x
=
∂2c

∂r2
+

1

(r + β−1)

∂c

∂r
+

1

(r + β−1)2
∂2c

∂θ2
, (18)

for 0 < x < L/Pew, 0 < r < H, |θ| < β/2, with boundary conditions (figure 2)

c(x = 0, r, θ) = 0, (19a)

c(x, r = 0, θ) = 1, c(x, r → +∞, θ)→ 0 or
∂c

∂r
(x, r = H, θ) = 0, (19b–d)

∂c

∂θ
(x, r, θ = ±β/2) = 0. (19e,f )

The concentration field c and resulting flux can be fully determined by solving (16) and (18) for
0 < x < L/Pew using the velocity u defined in (4) and (10), respectively.
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In regimes dominated by cross-channel diffusion, we use the cross-channel average of (16)
and (18) to determine the cross-channel averaged concentration and the flux. As introduced
previously, we use u = u+u′ and c = c+c′, where overbars denote cross-channel averages (along
the z-direction for parallel channels and along the θ-direction for wedges), and primes indicate
cross-channel variations. We obtain for parallel channels

u
∂c

∂x
+

∂

∂x
u′c′ =

∂2c

∂y2
, (20)

for 0 < x < L/Pew, 0 < y < H, with boundary conditions

c(x = 0, y) = 0, c(x, y = 0) = 1, c(x, y → +∞)→ 0 or
∂c

∂y
(x, y = H) = 0. (21a–d)

For truncated wedge channels we obtain

u
∂c

∂x
+

∂

∂x

(
u′c′
)

=
∂2c

∂r2
+

1

(r + β−1)

∂c

∂r
, (22)

for 0 < x < L/Pew, 0 < r < H, with boundary conditions

c(x = 0, r) = 0, c(x, r = 0) = 1, c(x, r → +∞)→ 0 or
∂c

∂r
(x, r = H) = 0. (23a–d)

In both geometries, concentration iso-surfaces are in general three-dimensional. Owing to the
boundary conditions, concentration profiles at a given 0 < x < L/Pew are curved upwards.
The effect of curved concentration profiles, combined with curved velocity profiles (as shown in
figure 3), is captured by the fluctuation flux u′c′ in (20) and (22). If c′ or u′ are small, this
term may be negligible and the equations become two-dimensional. Otherwise, this term can
either enhance or reduce the overall transport and flux. We investigate the effect of the three-
dimensional fluctuation flux in detail in the next sections by considering the different limits for
the ratio δ = δ̂/ŵ.

5. Channels with parallel walls

5.1. Thin boundary layer regime, δ̂ � ŵ

If δ � 1, we can use the Lévêque approximation (Lévêque, 1928) u = γy+O(δ2) in the diffusive
boundary layer, for y = O(δ) (for a discussion in English of some of Lévêque’s main results see
Glasgow, 2010). The base shear rate γ = O(1) is a function of z, with a small dependence on
H (see (7)). The advection–diffusion equation (16) becomes

(
γy +O(δ2)

) ∂c
∂x

=
∂2c

∂y2
+
∂2c

∂z2
. (24)

The different terms in (24) scale such that

δ
1

L/Pew
∼ 1

δ2
∨ 1, (25)

where a ∨ b selects whichever of a and b is dominant. The dominant balance is δ3 ∼ L/Pew in
the diffusive boundary layer, resulting in the well-known Lévêque problem (Lévêque, 1928) at
leading order,

γy
∂c

∂x
=
∂2c

∂y2
, (26)
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where the boundary conditions (17a–c) apply. Although ∂2c/∂z2 � 1, the problem remains
three-dimensional as for each ‘slice’ γ depends parametrically on z. We designate this modified
Lévêque problem as the ‘slice-wise problem’ hereafter. The scaling (25) also suggests that the
characteristic Péclet number in this problem is

Pe =
Pew
L

=
Û0ŵ

2

L̂D̂
. (27)

The rescaled Péclet number Pe compares the diffusion time across the channel width ŵ with the
advection time along the length of release area L̂. Thus, the diffusive boundary layer thickness
is δ ∼ Pe−1/3 in the Lévêque regime, which is valid for Pe1/3 � 1.

A similarity solution for (26) exists with similarity variable y/x1/3 (Bejan, 2013)

c(x, y, z) =
Γ(1/3, γ(z)y3/(9x))

Γ (1/3)
, (28)

where Γ(·, ·) denotes the upper incomplete Gamma function and Γ(·) = Γ(·, 0) the Gamma
function. By construction, our slice-wise solution (28) satisfies only the boundary conditions
(17a–c) in the x- and y- directions, but not the no-flux boundary conditions (17e,f ) at the
side walls since ∂c/∂z diverges as |z| → 1/2 when γ → 0. In fact, a lateral diffusive boundary
layer exists at the side walls of characteristic thickness δwall ∼ δ ∼ Pe−1/3, across which cross-
channel (z) diffusion is not negligible. In their two-dimensional channel geometry, Jiménez
(2005) resolved a similar wall boundary layer using a matched asymptotic solution, requiring
the numerical resolution of an elliptic problem. The correction to the mean flux was small
and higher order terms had to be found numerically. Since our problem is inherently three-
dimensional near the corners at |z| = 1/2 for both the velocity and concentration fields, we
choose to compute the small correction to the flux due to the wall boundary layers using three-
dimensional numerical calculations of the governing equations.We will discuss this further in
§5.4.

We define the dimensionless flux per unit area as (Landel et al., 2016)

j =
ĵŵ

D̂(ĉb − ĉ∞)
= − ∂c

∂y

∣∣∣∣
y=0

, (29)

where ĵ is the (dimensional) diffusive flux per unit area, with j > 0 for a positive flux into
the channel. We can then obtain the dimensionless average flux or Sherwood number for the
slice-wise modified Lévêque limit from the concentration field

Sh = 〈j〉 =
34/3γ1/3

2Γ(1/3)
Pe1/3, (30)

where 〈·〉 = (L/Pew)−1
∫ L/Pew
0

∫ 1/2
−1/2 · dz dx represents the average over the area of release. The

cross-channel variations of the velocity, which varies as cosh(z) according to (4), are captured

in the term γ(z)1/3 in our result (30).
As a further simplification of the slice-wise Lévêque problem, we consider a two-dimensional

solution based on approximating the velocity near the base as ub(y) = γy instead of ub(y, z) =
γ(z)y in (26), where boundary conditions (17a–c) apply. We designate this problem hereafter
as the ‘two-dimensional’ problem. The two-dimensional solution c is obtained by replacing γ(z)
in (28) by γ. The corresponding two-dimensional Sherwood number depends on (γ)1/3 instead

of γ1/3 in (30).
For H � 1, the two-dimensional Sherwood number deviates from the slice-wise Sherwood

number (30) by (γ1/3 − (γ)1/3)/γ1/3 ≈ −2.39 % (computed for H = 5 and using n = 1000
eigenvalues in (4)). This small deviation is close to the maximum asymptotic deviation found
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for H � 1, since γ becomes independent of H in this limit. The deviation decreases with
decreasing H as the velocity (4) converges towards the two-dimensional semi-parabolic Nusselt
film solution for H � 1. However, for H � 1, the top boundary condition for c (17c) is not
valid anymore and should be replaced with the no-flux boundary condition (17d). This vertical
confinement effect modifies the solution for c, as we will discuss in §5.3. Therefore, our slice-wise
solutions (28) for c and (30) for Sh, and the corresponding two-dimensional solutions, are only
valid for H � 1.

5.2. Thick boundary layer regime, δ̂ � ŵ

If δ � 1, the concentration still follows (16). In this limit, u in the diffusive boundary layer is
independent of the y-coordinate and parabolic in the z-direction, with u = 1 +O(δ−2) (see (6))
and u′ = O(1). A scaling analysis of (16), using u ∼ Uδ ∼ 1, x ∼ L/Pew = Pe−1, y ∼ δ � 1 and
z ∼ 1, shows that c follows ∂2c/∂z2 = 0 at leading order to satisfy all the boundary conditions
(17). Hence, c = c at leading order owing to the no-flux boundary conditions at the side walls.
The dependence of c with x and y can be obtained using the cross-channel averaged advection–
diffusion equation (20), where u′c′ is negligible since c′/c = O(δ−2)� 1 from the above scaling
analysis. Thus,

∂c

∂x
=
∂2c

∂y2
, (31)

for 0 < x < L/Pew, 0 < y < H, is valid for Pe1/2 � 1 since δ ∼ Pe−1/2. It is physically
intuitive that c is nearly uniform across the channel since we expect cross-channel diffusion to
dominate for thick diffusive boundary layers and small Péclet numbers.

First, we solve (31) for a finite domain height with 1 � δ . H < ∞, under the boundary
conditions (21a,b,d). Using separation of variables, we find

c(x, y) = 1−
+∞∑
n=0

2

Hσn
exp

(
−σ2nx

)
sin (σny) , (32)

with σn = π(2n + 1)/(2H). (Note that the eigenvalue here is the same as for the velocity field
in (5).) The Sherwood number, computed using (29), is

Sh = Pe
+∞∑
n=0

2

Hσ2n

(
1− exp

(
−σ2nPe−1

))
. (33)

In the limit H2Pe→ 0, corresponding to δ → H, our result (32) shows that c becomes uniform
across the channel, as expected intuitively, with c→ 1 everywhere since x ∼ Pe−1. In addition,
(33) predicts that, for H2Pe→ 1, the Sherwood number behaves as

Sh ∼ HPe, (34)

confirming that the flux vanishes in this limit.
Second, if 1 � δ � H, we can assume a semi-infinite domain in y. We solve (31) for

0 < x < L/Pew, 0 < y under (21a,b,c). A similarity solution exists (Bejan, 2013)

c(x, y) = Erfc
( y

2x1/2

)
, (35)

where Erfc(·) is the complementary error function. We find the Sherwood number

Sh =
2√
π
Pe1/2. (36)

Thus, we see that without vertical confinement, the Sherwood number increases at a faster rate
in the limit of small Pe, as Sh ∼ Pe1/2 in (36) instead of ∼ Pe in (34).
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5.3. Vertical confinement, δ̂ ∼ Ĥ

To study the impact of vertical confinement, δ ∼ H, on Sh we use the cross-channel averaged
advection–diffusion equation (20), under the no-flux top boundary condition (21d). Integrating
(20) in the streamwise direction from 0 to L/Pew, we obtain

−∂ 〈jy〉
∂y

=
∂2 〈c〉
∂y2

= Pe u c|x=L/Pew + Pe u′c′
∣∣
x=L/Pew

= qm + q′ (37)

with jy = −∂c/∂y the vertical flux at a given y coordinate. The quantity qm represents the
vertical (y-) profile of the contribution to the flux from the cross-channel averaged concentration
field at the end of the area of release, x = L/Pew. The quantity q′ represents the vertical (y-)
profile of the contribution to the flux from the cross-channel fluctuations of the concentration
field at x = L/Pew. We refer to qm and q′ as the local mean flux and local fluctuation flux,
respectively. Thus, the vertical variation of the vertical average flux −∂ 〈jy〉 /∂y depends on the
contributions of both qm and q′. Integrating again in the vertical direction from 0 to H, we
obtain

Sh = Pe
∫ H

0
u c|x=L/Pew dy + Pe

∫ H

0
u′c′
∣∣
x=L/Pew

dy = 〈jm〉+
〈
j′
〉
, (38)

where 〈jm〉 and 〈j′〉 are the total contributions from the mean and fluctuation fluxes to Sh.
We now assume that q′ is either negligible compared to qm or scales in a similar fashion to qm.
We will discuss this assumption in detail in §5.5, but we note that in the thick boundary layer
regime we have already shown that q′ � qm (see §5.2). In the limit δ ∼ H, we must have
c(x = L/Pew) ∼ 1, therefore the Sherwood number scales as

Sh ∼ QPe = UHPe, (39)

with Q =
∫ H
0 udy (and u from (4)) the channel volume flow rate and U ∼ Uδ the mean channel

velocity. In the limits of small or large channel heights, we find that the vertically confined
Sherwood number is: Sh ∼ H3Pe for H � 1, since U ∼ H2 in the y direction; and Sh ∼ HPe
for H � 1 since U ∼ 1, as also found in our theoretical result (34).

5.4. Transition regime, δ̂ ∼ ŵ, and numerical formulations for three- and
two-dimensional problems

For Pe ∼ 1, or δ ∼ 1, the streamwise (x) advection, vertical (y) and cross-channel (z) diffusion
are all of similar order of magnitude in the advection–diffusion equation (16). Thus, c is strongly
three-dimensional in the transition regime. To analyse the impact on the flux or Sh, we solve
(16) numerically under (17a,b,d–f ), using our three-dimensional result (4) for u. We vary Pe to
compare the numerical results with our asymptotic results in the thin (§5.1), thick (§5.2) and
vertically confined (§5.3) regimes. We formulate the problem for a finite channel height. This
Graetz-type problem can be solved using separation of variables (Graetz, 1885; Bejan, 2013).
Hence,

c(x, y, z) = 1−
+∞∑
n=1

kn exp(−νnx)An(y, z). (40)

The eigenpairs An and νn are solutions of the homogeneous eigenvalue problem

−uνnAn =
∂2An
∂y2

+
∂2An
∂z2

, (41)

for all integers n ≥ 1, 0 < x < L/Pew, 0 < y < H, |z| < 1/2, with boundary conditions

An(y = 0, z) = 0,
∂An
∂y

(y = H, z) = 0,
∂An
∂z

(y, z = ±1/2) = 0. (42)

15



Since the velocity (4) involves an infinite sum, which is impractical for analytical progress,
we solve a second-order finite difference formulation of (41) using the SLEPc implementation
(Hernandez et al., 2005) of the LAPACK library (Linear Algebra Package, Anderson et al.
(1999)). We verified our numerical scheme against known solutions as documented in B.1. The
agreement between the numerical solutions and asymptotic solutions obtained here provides
further verification. We then compute the amplitudes |An| in (40) using the upstream boundary
condition c(x = 0, y, z) = 0 and the orthogonality of the eigenfunctions.

Once An and νn are calculated, we compute the Sherwood number following (29),

Sh = Pe
+∞∑
n=0

1

νn

(
1− exp

(
−νnPe−1

)) ∫ 1/2

−1/2

∂An
∂y

∣∣∣∣
y=0

dz. (43)

The relevant dimensionless group is again Pe. Due to the decreasing exponential functions
in (40) and (43), c at the end of the area of release is mainly described by small eigenvalues.
The numerical solution suggests that the significant |An| decrease approximately hyperbolically
with n (not shown), whilst the eigenvalues νn increase monotonically with n. Thus, for a given
x < L/Pew, only a small number of eigenvalues is required to compute the solution accurately,
representing the local behaviour of the boundary layer solution, as will be shown in the next
section.

For comparison, we also solve a two-dimensional formulation of this problem based on the
cross-channel averaged advection–diffusion equation (20), neglecting u′c′:

u
∂c

∂x
=
∂2c

∂y2
(44)

for 0 < x < L/Pew, 0 < y < H, under (21a,b,d). The boundary conditions can also be
homogenised to obtain a one-dimensional eigenvalue problem, which we solve using a shooting
method (Berry and De Prima, 1952) to obtain c and a two-dimensional Sh. This simpler two-
dimensional formulation of the advection–diffusion problem allows us to assess a posteriori the
error on Sh when neglecting the three-dimensional flux u′c′.

More details about the three-dimensional and two-dimensional numerical calculations, and
the numerical results shown in this paper can be found in appendix B and table 3.

5.5. Results in parallel wall channels

In this section, we compare our asymptotic predictions for δ and Sh in the parallel channels
with three-dimensional and two-dimensional numerical calculations of the advection–diffusion
equation. The aim here is to assess whether three-dimensional effects related to the corners at
the base of the channel or due to confinement have a strong impact on δ and Sh in the different
regimes identified previously. We study the influence of Pe, lateral and vertical confinement
effects. We also analyze the relative magnitude of the three-dimensional fluctuation flux u′c′

and whether it can be neglected in (20).

5.5.1. Concentration field

In figure 4 we show contour plots of c for 0 ≤ z ≤ 1/2 (note the symmetry with z = 0) at
the end of the area of release, x = L/Pew, for various Péclet numbers: from Pe = 106 (figure
4a) to Pe = 10−1 (figure 4h). Solid lines show the numerical solution of the three-dimensional
formulation (40)–(42) using the three-dimensional velocity field (4). To ensure an accurate
resolution of the boundary layer, we imposed H ≥ 2δ. We normalise the y-axis by δ, computed
as δ = yδ with c(L/Pew, yδ, z) = 0.01. All the theoretical predictions shown in figure 4 for the
contour representing δ are referenced to the same value. The dashed lines are plotted using the
asymptotic concentration (28) in the slice-wise thin boundary layer regime, which used γ(z) but
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assumed no cross-channel diffusion. The dash-dotted lines are plotted using (28) assuming a
two-dimensional velocity profile (i.e. replacing γ(z) by γ). These two predictions, corresponding
to δ � 1 or Pe1/3 � 1, are shown in all graphs in figure 4. The dotted lines, only shown in
figures 4(e–h) where Pe = 102–10−1, respectively, are plotted using the solution (35) for c and
correspond to the thick boundary layer regime: 1� δ � H or H−1 � Pe1/2 � 1.

For Pe ≥ 100 (figures 4a–e), the two-dimensional predictions for δ in the thin boundary
layer regime (dash-dotted lines) are in agreement with the three-dimensional numerical results
in the interior of the channel |z| < 0.4. Near the side walls (1/2−|z| / 0.1), the two-dimensional
predictions underestimate the numerical three-dimensional results (c = 0.01 contour plotted with
a solid line) owing to the (basal) diffusive boundary layer at the wall. The diffusive boundary
layer is better captured by the slice-wise thin boundary layer prediction (28) (dashed lines).
The agreement improves as Pe increases (see figures 4a,b), since the influence of the three-
dimensional wall boundary layers, not captured by (28), reduces. At lower values of Pe, we
can see in figures 4(e,f ) (Pe = 100 and 10, respectively) that the characteristic wall boundary
layer thickness (in the z-direction) increases inwards and δwall ∼ 1 is not small anymore. The
thin boundary layer predictions are not valid anymore and increasingly underestimate δ with
decreasing Pe. As Pe ≈ 10 to 100, the thick boundary layer predictions for δ based on (35)
(dotted lines) are in qualitative agreement. The agreement improves significantly when Pe
decreases, confirming the change of regime to the thick boundary layer regime, valid for Pe1/2 �
1, as shown in figures 4(g,h) where Pe = 1, 0.1, respectively. The dotted lines and the contour
line c = 0.01 almost overlap in figures 4(g,h). The concentration profile becomes uniform across
the channel width as we predicted in §5.2.

5.5.2. Three-dimensional fluxes

To analyze the impact of the three-dimensional fluctuation flux u′c′ on the total flux or Sherwood
number, we plot in figure 5 qm, q′, 〈jm〉 and 〈j′〉 from (37) and (38), computed numerical using
(40–42) (see table 3, appendix B, for more details). We also show the asymptotic predictions
for δ � 1 (lines with lozenges) computed using (28).

The results indicate that the effect of the mean flux u c is much stronger than the effect of
the fluctuation flux u′c′ since |q′| � qm for most y (figure 5a) and | 〈j′〉 | � | 〈jm〉 | (figure 5b)
across all regimes: the thin boundary layer regime, Pe� 1; the transition regime, Pe ∼ 1; and
the thick boundary layer regime for Pe � 1. We also note that u′c′ tends to reduce the flux
and Sherwood number since q′ and 〈j′〉 < 0. The fluctuation flux, which has the strongest effect
at large Pe, is primarily due to the negative effect of the wall boundary layers that develop
for both u and c. Close to the wall, u decreases and u′ < 0 (figure 3a), whilst c increases and
c′ > 0 (figure 4a–d), thus producing a negative fluctuation flux in average. It is also interesting
to note that the maximum of the fluctuation flux

〈
u′c′
〉

occurs at mid-depth in the diffusive
boundary layer across all regimes. This is due to the contribution being from the product of
an increasing function of y, the velocity fluctuation u′, and a decreasing function of y, the
concentration fluctuations c′. Overall, the average fluctuation flux | 〈j′〉 | does not exceed more
that 25 % of the mean flux Sh for all Pe, and | 〈j′〉 |/ 〈jm〉 ≤ 20 %, which strongly suggests that
it can be neglected at leading order. In particular, 〈j′〉 vanishes in the thick boundary layer
regime, confirming a posteriori our assumption to neglect u′c′ when Pe1/2 � 1 (§5.2).

5.5.3. Sherwood number

In figure 6, we plot the three-dimensional numerical results for Sh, designated as Sh3, computed
using (43) as a function of Pe, with different open black symbols for different domain heights:
H = 1.25 (circles), H = 5 (crosses) and H = 15 (lozenges). For 10−3 ≤ Pe ≤ 104, the two-
dimensional numerical results (solid lines closely following the symbols), designated as Sh2,
based on (44) and neglecting u′c′ are in good agreement with Sh3, for all three H. In the
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Figure 4: Contour plots of the three-dimensional concentration field computed numerically (solid
lines) using (40)–(42) (see details in table 3, appendix B), at x = L/Pew, for various
Pe. In (a–h), dashed lines show the slice-wise thin boundary predictions (28) for
δ (Pe1/3 � 1); dash-dotted lines show the two-dimensional predictions for δ based
on (28). In (e–h), dotted lines show the thick boundary layer predictions (35) for δ
(H−1 � Pe1/2 � 1).

18



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

y/δ

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

q m
/(
S
h
/δ
),
q′
/(
S
h
/δ
)

(a)
Pe =106

Pe =105

Pe =104

Pe =103

Pe =102

Pe =101

Pe =1

Pe =10−1

10−1 100 101 102 103 104 105 106

Pe

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈j
m
〉/

S
h
,〈j

′ 〉
//
S
h

(b)

3D

3D

Thin-BL

Thin-BL

Figure 5: (a) Vertical profiles of the local mean flux qm ≥ 0 and local fluctuation flux q′ ≤ 0
at (x = L/Pew, y) computed following (37) using the three-dimensional numerical
simulations for different Pe (see details in table 3, appendix B). The curves range
Pe = 106 to 10−1. The thin boundary layer predictions (solid lines with lozenges)
follow (28). (b) Variations of the normalised total mean flux 〈jm〉 ≥ 0 (large dots)
and normalised total fluctuation flux 〈j′〉 ≤ 0 (squares) with Pe (the straight lines
joining the symbols are for visual aid), computed numerically following (38). The thin
boundary layer predictions for 〈jm〉 (solid line) and 〈j′〉 (dashed line) follow (28).

transition region 10−1 ≤ Pe ≤ 10 (see inset in figure 6) where the distribution for both u
and c are inherently three-dimensional, the numerical two-dimensional results are close to the
numerical three-dimensional results. We find a relative deviation, |Sh3 − Sh2|/Sh3, less than
5 % for Pe ≤ 740, and less than 20 % for 740 ≤ Pe ≤ 104 for all H. We note that for
H = 1.25 and 5 the deviation remains less than 5 % over the whole range shown. Part of this
deviation is due to numerical limitations (numerical resolution and truncation in the number
of eigenpairs), particularly at large Pe. For all H, the deviation increases monotonically with
increasing Pe, in agreement with the results in figure 5, which show that the contribution of
u′c′ increases at large Pe. At large Pe, the deviation (Sh3 − Sh2)/Sh3 should converge to the
theoretical deviation between the slice-wise asymptotic Sh and the two-dimensional asymptotic
Sh: (Sh3 − Sh2)/Sh3 → (γ1/3 − γ1/3)/γ1/3 ≈ −2.4 %. Indeed we have shown in §5.1 that as
Pe → ∞, Sh3 converges to the slice-wise prediction (30), whilst Sh3 converges to the two-

dimensional prediction, which replaces γ1/3 by γ1/3 in (30). Our numerical results appear to
confirm this prediction. For H = 1.25 in figure 6, we find (Sh3 − Sh2)/Sh3 ≈ −2.4 % as
Pe → 104. For larger H, we find that the magnitude of the deviation is smaller than 2.4 % for
Pe ≤ 756 (H=5) and Pe ≤ 92 (H = 15). Computation of additional eigenpairs for Sh3 would
extend these ranges to larger Pe. Therefore, the results in figure 6 strongly suggest a posteriori
that the three-dimensional flux u′c′ contributes to a small portion of Sh for all Pe and all H.

An important implication for practical applications where high accuracy is not critical is
that u′c′ can be neglected to solve the simpler two-dimensional problem (44), thus reducing
computational burden. For a given resolution δx in all directions, a three-dimensional solution
requires more memory for the storage of the grid by a factor of at least δx/w compared with a
two-dimensional solution. For matrix-based solvers such as LAPACK (Anderson et al., 1999),
computational time increases by a factor of approximately (δx/w)3 in the three-dimensional case.
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Figure 6: Sherwood number versus Péclet number in parallel channels. Three-dimensional nu-
merical results (black symbols) follow (43) for three channel heights (see details in
table 3, appendix B). Two-dimensional numerical results using (44) (neglecting the
three-dimensional flux u′c′) are plotted with solid lines closely following the symbols.
The slice-wise prediction (30) in the thin boundary layer regime (large Pe) is plotted
with a dashed line. The prediction (36) in the thick boundary layer regime (small Pe)
and for 1 � δ � H is plotted with a dash-dotted line. The prediction (33) in the
thick boundary layer regime and for 1 � δ ≤ H is plotted with blue stars for H = 5
and 15. As Pe→ 0, the scaling Sh ∼ HPe due to the impact of vertical confinement
is predicted by (39). For Pe ∼ 1, Shapprox = 1.96Pe1/2/(1 + 1.18Pe1/6) is shown with
a red dotted line in the inset.
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Therefore, though not fully optimised, the shooting method used to solve the two-dimensional
case is memory efficient and could be run on portable platforms with limited memory, such as
mobile phones.

At large Pe, the slice-wise thin boundary layer prediction (30) for Sh (dashed line in figure 6)
is in agreement with Sh3. At Pe = 104, the deviation between them is ≤ 1.5 % for H = 1.25,
≤ 3.3 % for H = 5, and ≤ 18.8 % for H = 15. The increase of the deviation with increasing
H is due to the numerical limitations mentioned above: a combination of the truncation error
from taking a finite number of terms in (43) and a reduced resolution since the number of
grid points is fixed for all our computational domains (see also table 3, appendix B). This is
a common problem when solving eigenvalue problems using finite-difference methods (Pryce,
1993). The effects of truncation error and reduced resolution are noticeable at large Pe for the
results in figure 6 for Pe > 106 (H = 1.25, not shown), Pe > 2.6× 104 (H = 5, not shown),
Pe > 2× 103 (H = 15). This emphasises the importance of our asymptotic solutions providing
accurate predictions in regimes where numerical results are computationally expensive and prone
to numerical errors.

At small Pe, the thick boundary layer prediction (36) Sh ∼ Pe1/2 (dash-dotted line) follows
the numerical results as long as δ � H. As δ ∼ H, the Sherwood number follows a different
regime: Sh ∼ Pe, as predicted by (33) (filled blue stars). The transition between the confined
regime (δ ∼ H) and the unconfined regime (δ � H) can be estimated at low Péclet numbers
using δ ∼ Pe−1/2 ∼ H. We find for H = 1.25 (circles), H = 5 (crosses) and H = 15 (lozenges)
that the transition occurs for Pe ∼ 0.6, 0.04 and 4× 10−3, respectively, which agrees with the
results shown in figure 6. In the confined regime we also find that Sh increases approximately
linearly with H at a sufficiently small and fixed Pe, as predicted by the asymptotic scaling
Sh ∼ HPe in (34).

In the transition region for Pe ∼ 1 (inset in figure 6) the maximum error between the asymp-
totic theoretical predictions and the three-dimensional numerical calculations, found at the in-
tersection of Sh ∼ Pe1/3 (dashed line) and Sh ∼ Pe1/2 (dash-dotted line), is always less than
approximately 30 %. Since we expect the transition to be smooth, at least for Stokes flow, we
propose a Padé approximant combining both asymptotic limits:

Shapprox =
1.96Pe1/2

1 + 1.18Pe1/6 (45)

(red dotted line in the inset), where the two numerical coefficients have been computed using a
least-squares fit. The approximant agrees with the three-dimensional numerical results to better
than 1% for 0.3 ≤ Pe ≤ 10, and to better than 7% for 0.06 ≤ Pe ≤ 50. Therefore, in practical
applications requiring slightly less accuracy, the asymptotic predictions and the combined fit
(45) can provide instantaneous quantitative predictions of the Sherwood number as long as
δ � H. The asymptotic scaling (34) also provides qualitative predictions of Sh in the confined
regime δ ∼ Pe−1/2 ∼ H.

6. Channels with a truncated wedge geometry

6.1. Thin boundary layer regime, δ̂ � ŵ

In truncated wedges (figure 2), for δ � 1 we can use the Lévêque approximation u = γr+O(δ2)
in the diffusive boundary layer, similar to parallel channels (§5.1). The shear rate γ = O(1)
depends on θ following (14). In this regime, the four terms in the advection–diffusion equation
(18) (in cylindrical coordinates) scale such that

δ
1

L/Pew
∼ 1

δ2
∨ β
δ
∨ 1, (46)
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which suggests that δ ∼ Pe−1/3, as found for parallel channels. The cross-channel diffusion term
(r + β−1)−2∂2c/∂θ2 is negligible since c′ = O(δ2) or smaller. The curvature term (second term
on the right hand side of (18)), not present in parallel channels, is also negligible at leading
order, and of order O(βδ) compared with the O(1) radial diffusion term and axial advection
term. We note that β can be ∼ 1 or � 1. At leading order, (18) reduces to the slice-wise
modified Lévêque problem: γr∂c/∂x = ∂2c/∂r2, where γ depends parametrically on θ, making
the problem three-dimensional. This is the same equation as in parallel channels (see (26)).
Hence, the slice-wise Sherwood number is

Sh =
34/3γ1/3

2Γ(1/3)
Pe1/3, (47)

for Pe1/3 � 1. The diffusive boundary layers along the side walls, where (r + β−1)−2∂2c/∂θ2

is not negligible, are very thin. Their thickness, in the cross-channel (r-) direction, is of the
order δwall ∼ δ. Their contribution to the flux j can therefore be neglected at leading order.
Similar to parallel channel, for β → 0 the small deviation between our slice-wise solution (which

assumes a three-dimensional velocity and use γ(z)1/3 in (47)) and the two-dimensional solution

(which assumes a uniform velocity and use γ1/3 instead) is (γ1/3 − γ1/3)/γ1/3 ≈ −2.38 % (for

β = 1× 10−6). The deviation (γ1/3 − γ1/3)/γ1/3 increases slightly with the opening angle. For
β = 0.5, 1.0 and π/2, we find: −2.80 %, −3.38 % and −4.11 % (with n = 5000 eigenpairs),
respectively (see figure 4(a), appendix A).

We now consider the influence of the higher order curvature term, neglected above. We still
assume u = γr, i.e. the next terms in O(δ2) are neglected. We also assume δ � β so that the
curvature term in (18) is much larger than the cross-channel diffusion term. The advection–
diffusion equation (18) becomes

γr
∂c

∂x
=
∂2c

∂r2
+

1

r + β−1
∂c

∂r
. (48)

We change the variables from (x, r) to (ξ, η), with ξ = x1/3/β−1, which represents the ratio
of δ ∼ x1/3 and ri = β−1, and η = r/x1/3 the similarity variable for the advection–diffusion
equation at leading order. After substituting a Poincaré expansion: c(ξ, η) = c0(η)+ξc1(η)+ . . .,
we find that the next term at order ξ1 (see appendix C.1 for further details), is

c1(x, r, θ) = − r

2x1/3
Γ(1/3, γ(θ)r3/(9x))

Γ (1/3)
. (49)

Hence, we obtain the slice-wise Sherwood number, with the first order correction c1,

Sh =
34/3γ1/3

2Γ(1/3)
Pe1/3 +

β

2
, (50)

for δ � 1 or Pe1/3 � 1, and β � 1. If O(δ2) terms are included in u in (48), we find a similar
correction for Sh with β/2 in (50) replaced by f(γ, β)β where the O(1) function f(γ, β) must
be computed numerically. We note that this expansion, at first order in ξ, is valid only if δ � β.
If δ ∼ β or � β, the scaling analysis (46) shows that the cross-channel diffusion term, neglected
in (48), is of the same order or larger than the curvature term. Thus, cross-channel diffusion
would need to be included in (48). This is intuitively expected as the wedge approaches the
parallel channel as β → 0.

6.2. Thick boundary layer regime

The terms in the governing advection–diffusion equation (18) for c scale such that

1

δ2
∼ 1

δ2
∨ β

δ(1 + βδ)
∨ 1

(1 + βδ)2
, (51)
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where we used u∂c/∂x ∼ Uδ/(L/Pew) = 1/δ2 and PeL = ÛδL̂/D̂ = L2/δ2 in the diffusive
boundary layer. In this regime, the boundary layer thickness is much larger than the local
width of the channel: δ � (1 + δβ), which implies strong cross-channel diffusion (last term
in (51)) compared with streamwise advection, radial diffusion and the curvature–diffusion term
(first, second and third terms in (51), respectively). Thus, we need to examine the influence of
two small independent parameters: a physical parameter 1/δ � 1; and a geometrical parameter
β � 1, the opening angle, which shows that the curvature term is also negligible compared
with cross-channel diffusion. Therefore, similar to parallel channels (see §5.2), cross-channel
diffusion dominates in (18) and we have 1/(r+β−1)2∂2c/∂θ2 = 0 at leading order. This implies
c = c + O(δ−2, β/δ, β2) is independent of θ at leading order, owing to the no-flux boundary
condition at the walls.

To analyse the two-dimensional dependence of c on x and r, we use the cross-channel averaged
advection–diffusion equation (22), where u′c′ = O(δ−2, β/δ, β2) is negligible compared with
u c = O(1). Equation (22) becomes, for 0 < x < L/Pew and 0 < r < H,

u
∂c

∂x
=
∂2c

∂r2
+

1

(r + β−1)

∂c

∂r
. (52)

The terms in (52) scale as the first three terms in (51), which shows that different balances can
arise depending on the ratio of the two small parameters 1/δ and β, i.e. βδ. We examine three
sub-regimes: if βδ � 1, sub-regime (i), the dominant balance is between streamwise advection
and radial diffusion; if βδ ∼ 1, sub-regime (ii), or βδ � 1, sub-regime (iii) the curvature term is
also important and all three terms need to be taken into account at leading order to determine
c and eventually the Sherwood number Sh.

(i) For βδ � 1, the wedge velocity is u = 1 +O
(
δ−2, β, (βδ)2

)
. Then, substituting η = r/x1/2

and ε = 1/x1/2 in (52) and using a two-parameter expansion: c(η, ε) = c0(η) + εc11(η) +
(β/ε)c12(η) + O

(
δ−2, β, (βδ)2

)
, we find at leading order c0 = Erfc(η/2) (see appendix C.2 for

further details), similar to (35) in parallel channels as expected intuitively. At the next order in
O(ε), we find c11 = 0. At order O(β/ε), we find

c12 = −η
2

Erfc
(η

2

)
. (53)

The Sherwood number including the corrections at order O(ε, β/ε), is

Sh =
2√
π
Pe1/2 +

β

2
, (54)

for β � 1/δ � 1 with δ ∼ Pe−1/2 and δ � H. To compute higher-order corrections for Sh, the
velocity field must also be expanded at the next order in O

(
δ−2, β, (βδ)2

)
.

(ii) For βδ ∼ 1, we effectively have only one small parameter β � 1. The velocity is u =
(1 + βr)2 +O(β2). All three terms in (52) are important, and the resulting equation

(
(1 + βr)2 +O(β2)

) ∂c
∂x

=
∂2c

∂r2
+

1

(r + β−1)

∂c

∂r
(55)

is not amenable for asymptotic expansions. Thus, we compute c and Sh numerically in this sub-
regime in §6.5. However, we expect that δ ∼ β−1 ∼ Pe−1/2, for δ � H. Then, we intuitively
expect Sh to be a function of β and Pe1/2 at leading order, with β ∼ Pe1/2.

(iii) For βδ � 1 we have two small parameters: β � 1 and 1/(βδ) � 1, and u = (βr)2 +
2βr +O(δ2β4, 1, δβ2). Similar to (ii), all three terms in (52) are important and(

1 +
2

βr
+O(β2, (δβ)−2, δ−1)

)
β2r2

∂c

∂x
=
∂2c

∂r2
+

1

(r + β−1)

∂c

∂r
(56)
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is not amenable for asymptotic expansions. We also compute c and Sh numerically in §6.5 in
this sub-regime. Nevertheless, we can expect that δ ∼ β−1/2Pe−1/4, for δ � H. We also expect
Sh to be a function of β1/2 and Pe1/4 at leading order, following the results found in other
regimes. We will show in §6.5 that δ ∼ β−1/2Pe−1/4 is indeed the correct scaling, whilst the
Sherwood number varies slightly from the expected scaling.

It is also worth noting that in sub-regime (iii), β � 1 and Pe � β2, curvature effects
have a direct impact on δ and Sh through a curvature-rescaled Péclet number Peβ = β2Pe.
This rescaling is due to the opening geometry of the wedge allowing the velocity to increase

as Uδ ∼ (βδ)2. Hence, we have δ ∼ Pe−1/4β . The curvature-rescaled Péclet number Peβ is

somewhat analogous to the Dean number, De = Re
√
D/(2Rc) (with Re the characteristic pipe

flow Reynolds number, D the pipe diameter and Rc a characteristic radius of curvature of the
pipe flow), which accounts for secondary recirculation flows due to curvature effects in slightly
bent pipe flows (e.g. Berger et al., 1983).

In summary, the two-dimensional thick boundary layer regime exists for wedge flows provided
both β � 1 and δ � 1. Sub-regime (i) only exists for small enough opening angle: β � 1/δ � 1,
which is effectively possible for β . 0.01. Sub-regime (iii) only exists for thick enough diffusive
boundary layers: δ � 1/β � 1, which is only possible for δ & 100. If either β ∼ 1 or δ ∼ 1,
the diffusive boundary layer is not thick compared with the local width of the gap and the thick
boundary layer regime does not apply. Terms in the governing equation (22), which have been
neglected or considered small in this regime, can become important. In §6.5, we explore using
numerical calculations whether the two-dimensional thick boundary layer regime holds beyond
its theoretical range of validity or whether three-dimensional effects become important.

6.3. Radial confinement, δ̂ ∼ Ĥ

Similar to §5.3, we study the impact of radial confinement δ ∼ H on Sh using the cross-
channel averaged advection–diffusion equation (22) under the free-slip and no-flux top boundary
condition (23d). Integrating (22) in the streamwise direction from 0 to L/Pew, we obtain

−∂ 〈jr〉
∂r

− 〈jr〉
(r + β−1)

=
∂2 〈c〉
∂r2

+
1

(r + β−1)

∂ 〈c〉
∂r

= Pe u c|x=L/Pew + Pe u′c′
∣∣
x=L/Pew

= qm + q′, (57)

with jr = −∂c/∂r the radial flux at a particular r coordinate. A new term exists compared to
parallel channels and (37): the second term on the left-hand side is due to curvature. Integrating
again in the radial direction from 0 to H, we obtain

Sh+

[ 〈c〉
(r + β−1)

]H
0

+

∫ H

0

〈c〉
(r + β−1)2

dr

= Pe
∫ H

0
u c|x=L/Pew dr + Pe

∫ H

0
u′c′
∣∣
x=L/Pew

dr = 〈jm〉+
〈
j′
〉
, (58)

where the curvature term has been integrated by parts. Similar to §5.3, we assume that q′ is
either negligible compared to qm or scales in a similar fashion. We will discuss this assumption
in detail in §6.5, but we note that in the thick boundary layer regime (see §6.2) we showed that
q′ � qm. For δ ∼ H, we must have c(x = L/Pew) ∼ 1. Hence,

Sh ∼ QPe = UHPe, (59)

with Q =
∫ H
0 udy (and u(r, θ) from (10)) the wedge volume flow rate and U the mean channel

velocity. We have neglected the weak dependence of 〈c〉 with r in the integral on the left hand
side of (58). In the limit of small or large channel heights, we find that the radially confined
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Sherwood number is: Sh ∼ H3Pe for H � 1, since U ∼ H2 in the r direction; Sh ∼ HPe for
H � 1 and βH � 1 or ∼ 1, since U is nearly uniform in the r direction at leading order for small
enough opening angles; and Sh ∼ H3Peβ for H � 1 and βH � 1, where the curvature-rescaled
Péclet number Peβ = β2Pe appears again, as in sub-regime (iii) of the thick boundary layer
regime (see §6.2).

6.4. Transition regime, δ̂ ∼ ŵ or β ∼ 1, and numerical formulations for three- and
two-dimensional problems

In wedge flows, for Pe ∼ 1 or δ ∼ 1, or for β ∼ 1, and in sub-regimes (ii) and (iii) of the
thick boundary layer regime (see §6.2), c is three-dimensional. We study the impact of three-
dimensional effects on Sh by solving (18) numerically under (19a,b,d–f ) and using our three-
dimensional result (10) for u. Using the same method as in §5.4, homogenisation of the boundary
conditions, followed by separation of variables, leads to

c(x, r, θ) = 1−
∞∑
n=1

exp(−ρnx)Bn(r, θ). (60)

The eigenpairs Bn and ρn are solutions of the homogeneous eigenvalue problem

−uρnBn =
∂2Bn
∂r2

+
1

r + β−1
∂Bn
∂r

+
1

(r + β−1)2
∂2Bn
∂θ2

, (61)

for all integers n ≥ 1, 0 < x < L/Pew, 0 < r < H, |β| < θ/2, with boundary conditions

Bn(r = 0, θ) = 0,
∂Bn
∂r

(r = H, θ) = 0, Bn(r, θ = ±1/2) = 0. (62)

We compute |Bn| in (60) using c(x = 0, r, θ) = 0 and the orthogonality of the eigenfunctions. As
in parallel channels, we solve a second-order finite difference formulation of (61) using LAPACK
(Anderson et al., 1999) (see more detail in appendix B).

For comparison, we also solve a two-dimensional formulation of this problem based on the
cross-channel averaged equation (22), neglecting the three-dimensional flux u′c′:

u
∂c

∂x
=
∂2c

∂r2
+

1

r + β−1
∂c

∂r
, (63)

for 0 < r < H, 0 < x < ∞, under (23a,b,d). Homogenisation of the boundary conditions
leads to a one-dimensional eigenvalue problem, which we solve using a shooting method (Berry
and De Prima, 1952) to obtain c and a two-dimensional Sh. This simpler two-dimensional
formulation of the transport problem in wedges allows us to assess a posteriori the error on Sh
when neglecting the three-dimensional flux u′c′.

6.5. Results in truncated wedges

In this section, we compare our asymptotic predictions for δ and Sh in the wedge geometry with
three- and two-dimensional numerical calculations of the advection–diffusion equation. Similar
to §5.5, the aim here is to assess whether three-dimensional effects related to the corners or due
to confinement have a strong impact on δ and Sh in the different regimes identified previously.
We study the influence of Pe, β, which controls the importance of curvature effects, not present
in parallel channels, and lateral and radial confinement effects. We also analyze the relative
magnitude of the three-dimensional fluctuation flux u′c′ and whether it can be neglected in (22).
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6.5.1. Concentration field

In figure 7, we show contour plots in polar coordinates (0 ≤ r ≤ 2δ,−β/2 ≤ θ ≤ β/2) of c at
the end of the area of release, x = L/Pew, for various Péclet numbers: from Pe = 104 (figure
7a) to 10−4 (7h). For conciseness, we only show results for β = 0.3. At smaller angles β, the
concentration converges towards the parallel geometry, while curvature effects are increasingly
important at larger β. Solid lines show the three-dimensional numerical results computed using
(60–62). We normalise the r-axis by δ, computed as δ = rδ with c(L/Pew, rδ, θ) = 0.01. As
can be seen in figure 7, this leads to a distortion of the region being viewed, with lower Pe
cases having a much greater range of r. The dashed lines, shown in figures 7(a–d) where
Pe ≥ 10, are plotted using the thin boundary layer predictions (28) (substituting (y, z) by
(r, θ)) with the first-order curvature correction (49), which used γ(θ), from (14), but assumed
no cross-channel diffusion. The dash-dotted lines are plotted using (28) and (49) assuming a
two-dimensional velocity profile, i.e. replacing γ(θ) by γ. These two predictions correspond to
δ � 1 or Pe1/3 � 1. The dotted lines, shown in figures 7(d–h) where Pe ≤ 10, are plotted
using (35) (substituting (y, z) by (r, θ)) for c with the first-order curvature correction (53) in
β/ε = x1/2β. These lines show the asymptotic predictions in the thick boundary layer regime,
sub-regime (i), for β � βδ � 1� δ � H or β � Pe1/2 � 1.

Similar to the parallel geometry, for Pe & 100 (figures 7a–c) the two-dimensional thin bound-
ary layer predictions (dash-dotted lines) are in reasonable agreement (within 12 % deviation)
with the three-dimensional numerical results in the interior of the channel |θ/β| < 0.25. The
diffusive boundary layer is better captured by the slice-wise thin boundary layer predictions
(dashed lines) at large Pe since the influence of the wall boundary layer reduces (see figures 7a,b)
for 0.3 < |θ/β| < 0.5). The main distinction between this and the parallel geometry is that the
transition between the thin and thick boundary layer regimes can occur at lower Pe in the wedge
and over a wider range: approximately 10−4 . Pe . 10 (see figures 7d–h). The transition oc-
curred for 1 . Pe . 100 in parallel channels (see figure 4). This is due to curvature effects
when β is not very small, such as here with β = 0.3. Then, as Pe decreases, the concentration
contours flatten owing to cross-channel diffusion, which becomes the dominant effect at low Pe.
We can also notice that the thick boundary layer prediction for δ in sub-regime (i) (dotted line
in figures 7d–h) only has approximate agreement with the numerical results (see concentration
contour c = 0.01) in a sub-range of the transition: for 10−1 . Pe . 101. At lower Pe, the
prediction in sub-regime (i) consistently underestimates δ, with increasing deviation from the
numerical results as Pe decreases. This is due to the fact that β = 0.3 is too large for sub-regime
(i) because this sub-regime is theoretically valid for β . 0.01 (§6.2). Nevertheless, the contour
plots reveal that the asymptotic results from sub-regime (i) still provide qualitative prediction
at angles an order of magnitude larger than its theoretical range of validity. For β = 0.3, sub-
regimes (ii) and (iii) are valid for Pe ∼ 9× 10−2 and Pe � 9× 10−2, as shown in table 1. In
these two sub-regimes, curvature effects become more important, enhancing radial diffusion and
leading to thicker boundary layers, comparatively with sub-regime (i) or parallel channels.

6.5.2. Three-dimensional fluxes

To analyze the impact of the three-dimensional fluctuation flux u′c′ on the total flux or Sherwood
number, we plot in figure 8 〈jm〉 and 〈j′〉 from (58), computed numerically using (60–62) for
β = 0.1 (symbols and solid line), β = 0.3 (symbols and dotted line), β = 0.5 (symbols and
dashed line), β = 1 (symbols and dash-dotted line) and β = π/2 (symbols and long-dashed
line) (see table 3, appendix B, for more details). We show the asymptotic predictions for δ � 1
computed numerically using (28) (substituting (y, z) by (r, θ)) and the first-order curvature
correction (49). They correspond to the horizontal lines plotted with a line style matching the
numerical results for each β.

Figure 8 shows that in the thick boundary layer regime (low Pe), the negative contribution
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Figure 7: Contour plots of the three-dimensional concentration field computed numerically (solid
lines) using (60–62) for β = 0.3, at x = L/Pew, for various Pe (see details in table 3,
appendix B). In (a–d), dashed lines show the slice-wise thin boundary layer predictions
(28) (substituting (y, z) by (r, θ)) for δ with the first order curvature correction (49)
(Pe1/3 � 1). Dash-dotted lines show the two-dimensional predictions for δ based on
(28). In (d–h), dotted lines show the thick boundary layer predictions for δ in sub-
regime (i) (35) (substituting (y, z) by (r, θ)) with the first order curvature correction
(53) (β � βδ � 1 � δ � H or β � Pe1/2 � 1). Although all panels have the
same β = 0.3, the scaling distorts the region so that as Pe is decreased the range of r
increases.
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β = 0.01 0.1 0.2 0.3

Thin boundary layer regime Pe & 103 Pe & 103 Pe & 103 Pe & 103

Thick boundary layer regime
Sub-regime (i) Pe ∼ 10−2 – – –
Sub-regime (ii) Pe ∼ 10−4 Pe ∼ 10−2 Pe ∼ 4× 10−2 Pe ∼ 9× 10−2

Sub-regime (iii) Pe� 10−4 Pe� 10−2 Pe� 4× 10−2 Pe� 9× 10−2

δ ∼ H (radial confinement) Pe . 4× 10−3 Pe . 2× 10−3 Pe . 5× 10−4 Pe . 2× 10−4

Confinement regime (i) (iii) (iii) (iii)

β = 0.5† 1† π/2†
Thin boundary layer regime Pe & 103 Pe & 103 Pe & 103

Thick boundary layer regime
Sub-regime (i) – – –
Sub-regime (ii) – – –
Sub-regime (iii) – – –
δ ∼ H (radial confinement) Pe . 8× 10−5 Pe . 2× 10−5 Pe . 8× 10−6

Confinement sub-regime (iii) (iii) (iii)

Table 1: Range of Péclet numbers for the asymptotic regimes found in figures 7–9. †For β = 0.5,
1 and π/2, β is theoretically not small enough for the thick boundary layer regime to
exist. Nevertheless, we have computed the transition to the radially confined regime

assuming that δ follows sub-regime (iii): δ ∼ Pe−1/4β = β−1/2Pe−1/4. The transition
Péclet number to the radially confined regime is shown with a black star in figure 9 for
each β.
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Figure 8: Variations of the normalised total mean flux 〈jm〉 > 0 (dots) and total fluctuation flux
〈j′〉 ≤ 0 (crosses) with Pe in wedges for 0.1 ≤ β ≤ π/2. The fluxes 〈jm〉 and 〈j′〉
are computed numerically using (58) (see details in table 3, appendix B). The thin
boundary layer predictions (28) are the horizontal lines with a line style matching the
numerical calculations for each β.
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Figure 9: Sherwood number versus Péclet number in wedges. Three-dimensional numerical re-
sults based on (60–62) for 0.01 ≤ β ≤ π are shown as symbols. Corresponding two-
dimensional numerical results based on (63) (neglecting the three-dimensional flux
u′c′) are plotted with solid lines closely following the symbols. Thick boundary layer
predictions (54), sub-regime (i), are plotted using dashed lines in matching colours.
As Pe → 0, the transition to the radially confined regime Sh ∼ HPe is marked by
black stars (see table 1). Inset: thin boundary layer predictions (50) plotted with
dash-dotted lines in matching colours.

of the total fluctuation flux 〈j′〉 vanishes for all β. For Pe ∼ 1, larger values of β lead to a faster
increase in the contribution of 〈j′〉, thus extending the range of the transition between thin and
thick boundary layer regimes for β ∼ 1. In the thin boundary layer regime (large Pe), 〈j′〉 reduces
the contribution from that evaluated just on the mean flux 〈jm〉 by between approximately 25 %
(β � 1) and 50 % (β = π/2). The numerical calculations (symbols) converge asymptotically
towards the predictions in the thin boundary layer regime at large Pe. The thin boundary
layer predictions capture the increasing trend in the contribution of 〈j′〉 with increasing β. For
β = 0.1, the results are similar to those obtained in parallel channels (figure 5b). This suggests
that a two-dimensional description of the flux in wedges is also appropriate at leading order
for the full range of Péclet numbers studied, provided β � 1. At this stage, it is uncertain
whether a two-dimensional description remains accurate at large Pe and for β ∼ 1 or whether
three-dimensional effects must be included. We discuss this further below.
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6.5.3. Sherwood number

Figure 9 shows Sh computed from the three-dimensional numerical calculation of (60–62) versus
Pe, for H = 15, and for: β = 0.01 (blue circles), β = 0.1 (orange crosses), β = 0.2 (green
lozenges), β = 0.3 (red stars), β = 0.5 (violet squares), β = 1.0 (brown hexagons), β = π/2 (pink
pentagons). The solid lines closely following the symbols correspond to the two-dimensional
numerical results based on (63), neglecting the three-dimensional flux u′c′ (see table 3, appendix
B, for details about the numerical computations). For 10−6 ≤ Pe ≤ 104, the two-dimensional
numerical results are mostly in agreement with the three-dimensional numerical results. For
β = π/2, we find that the deviation between the two-dimensional and the three-dimensional
results is within less than 5 % for Pe ≤ 102, and 10 % for 102 < Pe ≤ 3× 102. For β ≤ 0.3, the
deviation is within less than 5 % for Pe ≤ 4.2× 102, and 10 % for 4.2× 102 < Pe ≤ 1.5× 103.
The deviation for intermediate β are within the same bounds. The increased deviation observed
for β ∼ 1 and Pe ≥ 100 (brown and pink curves, inset of figure 9) is due to a combination
of truncation error and reduced resolution in the calculation of Sh, which is performed using
different methods between the two-dimensional and three-dimensional numerical calculations.
In general, we find that increasing the resolution and the number of eigenpairs for the calculation
of Sh reduces the deviation at large Pe and for β up to π/2 (see appendix B.3, figure 4(b)).
This also improves the agreement between the numerical results and the slice-wise thin boundary
layer predictions (50) at large Pe (dash-dotted lines using matching colours for each β, inset
only). We can also notice that the curves do not collapse at large Pe. This is due to the fact
that Sh depends on β (see (50)).

The results in figure 9 clearly demonstrate that for applications not requiring a high accuracy
for Sh, the three-dimensional fluctuation flux u′c′ can be neglected and the two-dimensional
formulation (63) can be used for all Pe and β up to at least π/2. As mentioned in §5.5,
the two-dimensional formulation significantly reduces computational burden whilst preserving
reasonable accuracy. In addition, our slice-wise thin boundary layer predictions (50) provide
fast and accurate complementary estimates of Sh in the computationally challenging regime at
Pe1/3 � 1 and for all β.

As Pe decreases, a more complex behaviour emerges due to the increased effect of curvature
for non-negligible opening angles. For β = 0.01 (blue symbols and curves in figure 9), curvature
effects are negligible and, as long as δ � H (HPe1/2 � 1), the two-dimensional thick boundary
layer predictions (54), sub-regime (i), Sh ∼ Pe1/2 + β/2, β � βδ � 1 � δ � H or β �
Pe1/2 � 1 (dashed lines using matching colours for each β in main graph), agree with the
numerical computations in the range predicted in table 1. Then, as β increases, Sh increases at
fixed Pe, departing from this prediction (see all colours other than blue). This is due to the fact
that βδ increases and sub-regime (i) is not valid any more. As shown in table 1, for 0.01� β � 1
sub-regime (i) disappears and the diffusive boundary layer can be in sub-regimes (ii) or (iii) of
the thick boundary layer regime, where the curvature term in the advection–diffusion equation
(52) becomes non-negligible and no asymptotic predictions exist for Sh in sub-regimes (ii) and
(iii). Table 1 presents the range of Pe where sub-regimes (ii) and (iii) are valid, provided β � 1.
For β ≥ 0.5, the results shown in violet, brown and pink cannot be considered in the thick
boundary layer regime since δ ∼ 1 + βδ (see scaling analysis in §6.2).

Then, if β ∼ 1, all the terms in the governing advection–diffusion equation (18) are important,
making the problem even more three-dimensional and requiring full numerical calculation of (18).
As can be seen in figure 9, an increase in β leads to an increase in Sh, which appears to tend
towards a plateau, reducing its dependence with Pe.

At very low Pe, radial confinement becomes important and the curves follow another regime:
Sh ∼ HPe (see (59)) similar to parallel channels (see figure 6). The Pe at which the the
radially confined regime occurs depends on the regime that the boundary layer would be without
confinement effect. The corresponding transitional Pe and the associated regime are indicated
in the rows “δ ∼ H” and “Confinement regime” in table 1. The predictions for the transitional
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Figure 10: Study of the thick boundary layer regime, sub-regime (iii), (see §6.2) where β � 1�
βδ � δ � H or Pe1/4β � β � 1 and the dependence with the curvature-rescaled

Péclet number Peβ = β2Pe. (a) Variation of the normalised δ with Pe1/4β /β for

various β. (b) Variation of Sh/Pe1/4β with Pe1/4β /β and for the same β as in (a).

Pe (black stars in figure 9) agree with the numerical results. For β ≥ 0.5, since the thick
boundary layer regime is not theoretically valid, as discussed previously, the predictions given
in table 1 assume that the diffusive boundary layer is in sub-regime (iii) of the thick boundary
layer regime. As shown in figure 9, the estimated transitional Pe are still accurate even for
β ≥ 0.5, at least up to π/2 (see black stars for the violet squares, brown hexagons and pink
pentagons). We note that the locus of the confinement transition is not a simple curve. This is
partly due to the fact that the confinement transition occurs in different sub-regimes, but also
that for β = 0.5, 1 and π/2 the transition does not occur in an asymptotic regime, as stated in
table 1.

Sub-regime (iii) of the thick boundary layer regime occurs only at very low Péclet numbers:
Pe1/2 � β � 1. As seen in table 1, this regime may only appear in figure 9 for a very limited
range of Pe and for β = 0.2 and 0.3 only, as radial confinement effects also become important
at similar Pe. In sub-regime (iii), we noted in §6.2 the importance of a curvature-rescaled

Péclet numbers Peβ = β2Pe since Uδ ∼ (βδ)2. In general, we must have Pe−1/4β � H when

Pe1/4β /β � 1 for sub-regime (iii) to exist without being affected by radial confinement effects. To

show sub-regime (iii) more clearly, we plot in figure 10(a) δ/Pe−1/4β for various 0.01 ≤ β ≤ 0.1 as

a function of 10−2 ≤ Pe1/4β /β ≤ 10, effectively ranging 10−12 ≤ Pe ≤ 100. All the results shown
in figure 10(a) and (b) were computed numerically using the two-dimensional formulation (63),
for H = 1000 and n = 5000. We decided to use the two-dimensional formulation, instead of the
exact three-dimensional formulation, due to computational difficulties in reaching sufficiently
low Pe. We expect the results to remain accurate since, as we have shown previously, the error
made using the two-dimensional formulation remains small, particularly at low β and low Pe.
We can see that for Pe1/4β /β � 1, the predicted transition for sub-regime (iii), all the curves

collapse and δ ∼ Pe−1/4β , as suggested by our scaling analysis in §6.2.
In contrast with δ, we find that Sh (figure 10(b)) does not follow the intuitive scaling

Sh ∼ Pe1/4β . Instead, the collapse of the curves suggests a different trend in sub-regime (iii):
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Sh/Pe1/4β ∼ (Pe1/4β /β)−3/4, or equivalently Sh ∼ β3/4Pe1/16β . However, we have not been able

to confirm this result analytically. We find that this empirical collapse occurs for Pe1/4β /β � 1,
as long as radial confinement effects are not important. Radial confinement effects occur when

δ ∼ H, or Pe−1/4β ∼ H, as shown by the radical change of regime at lower Pe1/4β /β in figure 10(b).

The weaker dependence of Sh on Pe in the limit of vanishing Pe and Pe1/4β /β � 1, assuming
no radial confinement effects, shows that multiple effects become important in addition to the
streamwise advection–radial diffusion balance. This has been observed both in the asymptotic
sub-regime (iii) in figure 10(b) and the regime β ∼ 1 in figure 9. Curvature effects become
important and the velocity field increases such that Uδ ∼ (βδ)2 due to the opening of the wedge
channel. These combined effects are the cause of the observed plateau in the Sherwood number
in figure 9, as Pe → 0 and β ∼ 1, which implies an enhanced mass transfer compared with
parallel-wall channels. This is intuitively expected as lateral confinement effects vanish with
increasing opening angle.

7. Discussion and implications for practical applications

As mentioned in §1, this study applies to the removal of contaminant trapped in sub-surface
features such as gaps, cracks or folds. We assumed that the area of release is constant and flat,
and does not impact the velocity field. In practice, the contaminant may take the shape of a
droplet which can perturb the flow in various ways: for instance through changes in the height of
the channel, particularly when δ ∼ H, causing a change in velocity and modifying Pe, thereby
affecting the mass transfer. We also assumed that the scalar released is passive. It is likely that
this assumption is justified for slowly dissolving or low solubility substances such as found in
many cleaning and decontamination scenarios. Otherwise, changes to the density or viscosity of
the cleaning agent need to be accounted for. For example, if transport of the scalar leads to a
significant change in fluid density, buoyancy effects should be considered. Significant changes of
the fluid viscosity with tracer concentration could change the shear profile in ways which could
affect the Sherwood number. This may be of particular importance for materials such as highly
soluble liquids with high viscosity.

Another potential limitation of this study is the geometrical simplification of the bottom of
the channel, particularly in the case of mass transfer. A dissolving droplet or solid at the bottom
of the channel may not have a flat surface, as assumed in the parallel-wall geometry, or a convex
circular surface, as assumed in the truncated wedge geometry; or its shape may be affected by
the dissolution process itself. We did not consider this level of detail in order to obtain simple
analytical expressions and deduce key physical insight, which might have been lost in a full
numerical treatment.

Applications with slow changes in time of the source concentration can also exploit our results
under the assumption of a quasi-steady diffusive boundary layer. The concentration profile and
mass transfer in the diffusive boundary layer can be considered to adjust instantaneously to the
changes in the source concentration (see Landel et al., 2016).

The key and most intuitive implication of our findings to decontamination and cleaning appli-
cations is that increasing the Péclet number Pe improves the flux, which then allows for better
neutralisation of the substance through reactions in the bulk. We find that increasing the width
of the channel ŵ has the strongest impact on increasing Pe. Indeed, we have Pe ∼ ŵ4 since
the characteristic channel velocity Û0 increases quadratically with ŵ. However, changes of the
channel width are only possible through alterations of the material. Such techniques may not
be favoured due to their destructive potential for substrates, but could be considered at the
designer stage for some applications.

The main physical parameter generally controlled in cleaning and decontamination applica-
tions, and which can increase Pe in a less destructive way, is the flow velocity since Pe ∝ Û0.
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The local velocity in the channel is controlled by pressure forces, gravity, viscosity and capillary
forces. Therefore, reducing the viscosity of the cleansing flow, through through the formulation
or an increase of temperature for instance, or increasing the pressure gradient, could lead to
increasing Pe. Depending on the geometry and the regime, different gains in the flux can be
obtained. For example, in the case of parallel channels, the highest gain is obtained when the
flow is confined vertically: doubling the speed Û0 will also double the Sherwood number Sh and
thus the overall flux. If the boundary layer is unconfined vertically but confined in the lateral
direction (thick boundary layer regime), doubling Û0 yields an increase by 21/2 ≈ 1.41 in the
flux. In the thin boundary layer regime, where the boundary layer is unconfined, doubling Û0

yields an increase of only 21/3 ≈ 1.26 in the flux. However, these results are valid provided that
the boundary layer does not change regime. As Û0 increases, δ decreases, reducing confinement
effects and potentially leading to a change in regime. Consequently, while there are still gains in
the flux, the gains may be smaller. Increasing Û0 inside sub-surface channels can be challenging.
Most decontamination and cleaning techniques involve surface washing which has a limited effect
on the velocity in sub-surface features, which may be driven purely by gravitational draining.

Mass transfer from the area of release through a diffusive boundary layer is a first but key
step towards complete removal in the context of cleaning and decontamination. For very long
channels, scalar transport beyond the area of release, i.e. for L̂ < x̂ < ∞, becomes a Taylor–
Aris problem (Taylor, 1953; Aris, 1956) with non-uniform inlet scalar profile (see figures 4 and
7 for concentration profiles at the downstream end of the area of release). Giona et al. (2009)
study the dispersion of a scalar transported in laminar channel flows with various smooth and
non-smooth cross-sectional geometries. They consider the case of impulse feeding with no-flux
boundary condition on all the channel walls. Their results describe the evolution of the scalar
distribution beyond the area of release but at a finite distance, thus complementing the works
of Taylor (1953) and Aris (1956) who looked at the far field distribution. Similar to our Pe,
their effective Péclet number compares the axial convective time scale to the transverse or cross
channel diffusive time scale. In the limit of vanishing effective Péclet number they recover the
Taylor–Aris regime, whilst for effective Péclet numbers of more than 10 they find an advection
dominated dispersion regime which is characterised by wall boundary layers with slow advective
transport. Their advection-dominated dispersion regime has parallels with our thick boundary
layer regime, thus making the Taylor–Aris regime analogous with our thick boundary layer
regime.

The existence of the advection dominated dispersion regime has practical implications for
decontamination problems. The scalar can be trapped in boundary layers close to the walls
(Adrover et al., 2009). This can increase its dwelling time in the channel and could potentially
enable ingress into absorbing channel walls, thus, dispersing contaminants further.

Our results are also relevant to turbulent flows, provided the diffusive boundary layer is thinner
than the viscous sub-layer of the turbulent wall boundary layer if the flow. In the case of shallow
cracks and gaps on a substrate, or for rough substrates, the thin film flow washing the surface
can be turbulent above these features. In general the viscous sub-layer develops faster than
the diffusive boundary layer, due to the high Schmidt numbers involved in typical cleaning and
decontamination problems, of the order of 103 to 104.

8. Summary and conclusion

We have studied in this paper the convective transport of a passive scalar released at the base
of generic rectangular channels with parallel walls and channels with a truncated wedge cross-
section with angled walls. Our main objective was to predict the flux or Sherwood number
Sh as a function of the flow, scalar properties, and the geometry. Due to the lateral and
vertical or radial confinement, the resulting diffusive boundary layer for the scalar is three-
dimensional. This makes the problem too complex to solve analytically in the general case.

33



Using a combination of asymptotic analysis and numerical calculations, we have found that
different regimes exist for Sh depending mainly on the ratio of the diffusive boundary layer
thickness and the gap width δ = δ̂/ŵ. We have also shown that δ is a function of a characteristic
Péclet number, Pe = (ŵ2/D̂)/(L̂/Û0), and the opening angle β for wedges, depending on the
regime. An important and unexpected conclusion is that in all the regimes identified, two-
dimensional approximate models can provide accurate quantitative predictions for Sh across
all the parameters and geometries explored, despite the problem begin fundamentally three-
dimensional. We summarize in table 2 the different predictions for Sh, δ and Uδ for each regime
and channel geometry. The main remarks of our study are:
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• In the thin boundary layer regime, Pe � 1, both geometries follow the classical Lévêque
regime with Sh ∼ Pe1/3. Since δ � 1, the influence of the geometry, whether curved
or not, and the effect of lateral confinement are negligible, except for β ∼ 1 where Sh ∼
Pe1/3 + β/2. We find that the effect of the diffusive boundary layers due to the no-flux
side walls is small, decreasing with increasing Péclet number, which explains why two-
dimensional approximate models provide accurate results in this regime.

• In the thick boundary layer limit, Pe � 1, cross-channel diffusion is dominant and the
concentration is uniform across the channel. For parallel wall channels, Uδ is asymptotically
constant with distance from the base of the channel. The resulting Sherwood number
follows Sh ∼ Pe1/2. In parallel channels, we find a smooth transition between the thick
and thin boundary layer regimes at intermediate Péclet numbers, Pe ∼ 1 that is empirically
described by the Padé approximant Shapprox ≈ 1.96Pe1/2/(1 + 1.18Pe1/6). In contrast,
the Sherwood number in the truncated wedge geometry follows a more complex behaviour
across the transition regime and the thick boundary layer regime, depending on the opening
angle β and Pe. As β increases at a fixed Pe . 1, we find that Sh has a linear dependence
with increasing β. For β ∼ 1, we find that the dependence of Sh with Pe decreases. This
is due to curvature effects. As β increases, the influence of the no-flux boundary condition
at the side walls is lessened, which tends to enhance curvature-induced diffusion.

• We also found another effect of increasing the opening angle in which the velocity field
is less constrained by the side walls and increases quadratically with β and r. Thick
boundary layers then experience an increasing velocity with distance from the area of
release: Uδ ∼ (βr)2. In this regime, sub-regime (iii), we showed that the diffusive boundary
layer thickness scales with a curvature-rescaled Péclet number Peβ = β2Pe, such that

δ ∼ Pe−1/4β in the limit Pe1/4β � β � 1, provided δ � H so that the flow is not
constrained radially. However, we find that the Sherwood number Sh does not follow

the intuitive scaling Sh ∼ 1/δ ∼ Pe1/4β , but instead appears to follow the empirical

scaling Sh ∼ β3/4Pe1/16β . This enhanced flux is due to increased diffusion from curvature
effect. The curvature term in the cross-channel averaged advection–diffusion equation in
cylindrical coordinates is a leading order term in this limit. Therefore, to predict accurately
its effect on the resulting mass transfer, numerical computation is necessary.

• We have also shown that it is not necessary to solve the full three-dimensional advection–
diffusion equation to obtain an accurate estimate of Sh. The results for Sh predicted
by solutions to the simplified two-dimensional cross-channel averaged advection–diffusion
equations (44) and (63), for parallel wall channels and truncated wedges respectively, agree
with the full three-dimensional numerical solution to better than 5 % for Pe ≤ 100 for all
curves calculated. We have also shown that this can be extended towards larger Pe by
improving the numerical resolution. These simplified equations neglect the contribution
to the overall flux of the three-dimensional fluctuation flux u′c′, which can be responsible
for up to 50 % of the total streamwise flux at some height for large Pe and β ∼ 1, but
is negligible for low Pe as shown by our asymptotic analysis and numerical results. It is
therefore somewhat surprising that the significant non-zero contribution from u′c′, which
varies with the height above the base, leads to only a small net contribution to the three-
dimensional Sherwood number after integration over the depth of the flow. Nevertheless,
our findings reveal that the net effect of this y-varying u′c′ contribution, integrated over
the depth of the flow, leads to only a small deviation on the two-dimensional Sherwood
number for all Péclet numbers and opening angles. The asymptotic analysis shows that in
the limit of large Pe a two-dimensional computation over-predicts the Sherwood number
by only 2.4 % for channels with parallel walls and by less than 4.5 % for truncated wedges
with β ≤ π/2. Therefore, the two-dimensional equations (44) (parallel channels) and
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(63) (wedges) will be useful to many applications where improving computational speed
is critical.

• In addition, we have demonstrated that vertical (parallel channels) and radial (wedges)
confinement lead to Sh ∼ UδHPe when δ → H for all the geometries studied and at any
Péclet numbers. Effectively, vertical or radial confinement has the strongest impact on
reducing the flux. This is due to significant reduction in the gradient of the concentration
field normal to the area of release. This is an important finding for applications optimising
convective fluxes in narrow spaces.

The two geometries studied provide insight as to the impact of having other opening channel
geometries such as convex or concave side walls of complex profiles. The impact occurs mainly
in the thick boundary layer regime where the velocity field varies depending on lateral confine-
ment. From scaling analysis, we find that δ ∼ (UδPe)−1/2, for δ � H. As the channel width
increases, the resulting Sh increases owing to a combination of enhanced streamwise advection
and enhanced diffusion through curvature effects. An accurate dependence of Sh with flow and
geometrical properties can be computed numerically using the simplified two-dimensional equa-
tions (44) or (63). Nevertheless, we note that the dependence with the Péclet number will be
of the form Sh ∼ Peb, where the exponent b ≤ 1/2 is a function of Pe, provided Uδ increases
with δ. We predict that this result is valid for all Pe� 1 and δ � H. For δ ∼ H, our previous
result Sh ∼ UδHPe should hold, being valid for any geometry.

The low dependence of the average flux on cross-channel variations found for all geometries and
across all Péclet numbers is an important result. Specifically, by neglecting three-dimensional
effects, the broad range of advanced analytical techniques for two-dimensional problems can be
exploited to obtain further result. For instance, conformal mapping and potential flow techniques
could explore how the Sherwood number depends on more complex geometry and flow profile
in the (x, y) or (x, r) plane (Bazant, 2004; Choi et al., 2005). Our results strongly suggest that
small variations to the geometry and flow profile in the cross-sectional (x, z) plane, beyond the
geometries studied here, are unlikely to be important. However, we leave the case of more
complex cross-sectional variations for future studies.

A. Additional material related to the flow field

Figure 3(a) shows the dependence of the cross-channel averaged bottom shear rate γ with H for
parallel channels. We find that γ rapidly approaches an asymptotic value of approximately 3.26
for H > 1. Figure 3(b) presents similar results as in figure 3(a) for truncated wedges of various
angles β. The mean shear rate γ increases with increasing β. The channel height required for γ
to reach an asymptotic plateau increases with β.

In figure 4(a) we show the dependence of the negative deviation (γ1/3− γ̄1/3)/γ1/3 with H and
β. This corresponds to the deviation between the slice-wise and the two-dimensional solution
of Sh in the thin boundary layer regime, see equation (30) for parallel-wall channels and (47)
for truncated wedges. The numerical results are computed using nmax = 5000 eigenpairs for γ
based on (14). For β / 1, the deviation appears to reach an asymptotic plateau for H / 100.
We see that for β → 0 the magnitude of the deviation approaches the value for channels with
parallel walls, approximately 2.39 %. At β ∼ 1, the deviation remains small, slightly larger than
4 % for H = 100 and β = π/2.
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B. Numerical computations

B.1. Verification of our numerical schemes

We verified our numerical schemes for the computation of the three-dimensional and two-
dimensional problems (see §5.4 and §6.4) by recovering the well-known Lévêque solutions for
heat transfer in the thin boundary layer limit, which solves the scalar transport equation

y
∂c

∂x
=
∂2c

∂y2
, (64)

for 0 < x <∞ and 0 < y <∞ with boundary conditions

c(x = 0, y) = 0, c(0 < x < L, 0) = 1, c(x, y →∞)→ 0. (65)

The solution for this problem is given in classical texts such as Bejan (2013). In appropriate
dimensionless form it is

S̆h =
34/3

2Γ(1/3)
P̆ e

1/3
L , (66)

where S̆h is the Sherwood number (defined as S̆h = 1/L
∫ L
0 ∂c/∂y|y=0dx) and the appropriate

Péclet number (P̆ eL = 1/L) (Bejan, 2013).
The two-dimensional numerical scheme used in this paper solves (44) with boundary conditions

(21a,b,d), on a finite domain with 0 < y < H. Since the governing equation (64) with boundary
conditions (65) is defined for an unconfined flow (0 < y <∞), we expect the numerical solution
to diverge from the analytical solution for small P̆ eL as the boundary layer assumption made
in deriving (64) is no longer valid (see also (Bejan, 2013)) when the boundary layer thickness
appropaches H.

The three-dimensional numerical scheme used in this paper solves (16) with boundary con-
ditions (17a,b,d-f). It is expected to recover (66) if u(y, z) = y. Note that the velocity field in
this model problem is inconsistent with the lateral boundary conditions at z = ±1/2 in (3) and
does not depend on z. Therefore, the three-dimensional code also solves the two-dimensional
problem (66) provided, as for the two-dimensional case, that the boundary layer thickness is
much smaller than the channel height.

Figure 1 compares the three-dimensional numerical solutions for two different domain heights
and resolutions (crosses: H = 15, (Ny, Nz) = (50, 5) (grey) and (400, 40) (black); circles: H = 1,
(Ny, Nz) = (50, 5) (grey) and (400, 40) (black)) against (66). In figure 1(a) the numerical
solutions are plotted together with the analytical solution (66) (solid line). The error between
the numerical and the analytical solution is plotted in figure 1(b). A minimum error exists for
both H: for H = 1, the minimum is at P̆ eL ≈ 101; for H = 15 at P̆ eL ≈ 10−2. The boundary

layer thickness scales as δ ∼ P̆ e−1/3L (Bejan, 2013). Therefore, P̆ eL ≈ 10 corresponds to δ ≈ 0.5
and P̆ eL ≈ 10−2 to δ ≈ 5, thus, the effect of vertical confinement on the boundary layer becomes
non-negligible as δ ∼ H, as anticipated above.

Figure 1(b) shows that for P̆ eL ' 10 (H = 1) and P̆ eL ' 10−2 the error is less than 1 % for
about 2.5 orders of magnitude in P̆ eL for the lower resolution calculations and about 4.5 orders
of magnitude for the higher resolution calculations. The error increases again with increasing
P̆ eL as the boundary layer thickness decreases and approaches the numerical resolution. For
example, for H = 15 resolved as (400, 40) (black crosses), P̆ eL ≈ 500 for an error of 1 %. This
corresponds to a boundary layer thickness of about 0.13, which approaches the grid size (0.0375).
At this resolution, the boundary layer can only be resolved with reduced accuracy for P̆ eL > 500.

We proceed analogously for the validation of the two-dimensional scheme. The results are
compared directly in figure 2(a). Figure 2(b) shows the relative error. Similar to before, circles
indicate solutions with H = 1.25 and crosses with H = 15. Since we were able to choose a large
resolution on a one-dimensional grid (Ny = 25000, consistent with other computations in this
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Figure 1: Direct comparison between the three-dimensional numerical results for the Sherwood
number (symbols) obtained with our three-dimensional numerical scheme for the clas-
sical Lévêque problem (64 with (65)) for two different domain heights and resolutions
and the analytical solution (66) (solid line). Crosses: H = 15, (Ny, Nz) = (50, 5)
(grey) and (400, 40) (black); circles: H = 1, (Ny, Nz) = (50, 5) (grey) and (400, 40)
(black). (b) Relative error for the data shown in (a).
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Figure 2: (a) Direct comparison between two-dimensional numerical results for the Sherwood
number (symbols) obtained with our two-dimensional scheme for the classical Lévêque
problem and the analytical solution ((66) (solid line). Crosses: H = 15, Ny = 25000;
circles: H = 1.25, Ny = 25000. (b) Relative error for the data shown in (a).
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paper), we only investigate one resolution. Since the shooting method computes the eigenvalues
serially (Berry and De Prima, 1952) and the computational effort increases for larger eigenvalues,
the truncation of the series is required nevertheless. Consistent with the solutions obtained from
the three-dimensional code, we find a minimum value of P̆ eL at which the two solutions agree,
which is consistent between both codes since both codes solve effectively the same problem. As
can be seen, an excellent agreement, to within (1 %), between both solutions is obtained for
both channel heights for approximately four orders of magnitude. Computation of additional
eigenpairs will extend the agreement between both solutions towards smaller P̆ eL until the
resolution limit is reached.

We note that our code verification spans multiple orders of magnitude in P̆ eL and therefore
in S̆h. Any computation spanning such a range of values is highly challenging and expensive
and is eventually limited by numerical resolution. This is one of the reasons why we supplement
the numerical solutions with asymptotic solutions throughout this paper.

B.2. Numerical details

Table 3 provides details about the numerical computations presented in this study. The numer-
ical calculations of u for parallel channels (4) and for wedges (10) were affected by numerical
overflows at small H and large β, even with 128 bit floating point precision. As an error criterion
we used that in the interior of the channel (y = [0.001, 0.999H], z = [−0.495, 0.495], analogous
for wedges) the relative error of the flow field (defined as the difference to a computation made
with 1.5 times as many eigenpairs) should be less than 1 %. For rectangular channels, velocity
fields were computed with at least 5000 eigenpairs and for wedge-shaped channels the velocity
fields were computed with at least 2000 eigenpairs.

Semi-infinite domains (figures 4, 5, 7, 8 and 10) were approximated by solving the flow field
in a channel of sufficient height (designated Hf ) to ensure the flow field is independent with
height. The height of the domain for solving the advection–diffusion problem (designated HD)
was then chosen such that HD > 2δ. We note that when HD = Hf , the channel height is simply
designated as H.

B.3. Effect of truncation error

Figure 4(b) reproduces results from figure 9, for β = 1 and π/2 (solid lines and black symbols),
for which we noted a larger deviation from the asymptotic prediction (50) (dash-dotted lines)
for Pe & 103. Here the results are supplemented by three-dimensional (open symbols) and two-
dimensional (dotted lines) computations at the same β but with a reduced domain height for
the advection–diffusion problem: from HD = 15 (figure 9) to HD = 1 (figure 4(b)) (Hf = 15).
The numerical results now agree with the asymptotic prediction (50) for an extended range:
up to Pe ∼ 106. This is due to the increased resolution obtained when reducing the domain
height, since the number of grid points is maintained fixed in all our computational domains
(see table 3, appendix B). The drawback of reducing HD is that the transition to the radially
confined regime occurs at higher values of Pe.
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Figure 3: Variation γ with H for (a) parallel channels, computed with (7), and (b) wedges with
various β (indicated on each curve), computed with (14) (see table 3, appendix B,
for numerical details). In (a), for H > 1.4, the solution is truncated at n = 20000
eigenpairs, for smaller channel heights fewer eigenpairs are used: 0.71 < H ≤ 1.4,
n ≤ 5000; 0.27 < H ≤ 0.71, n ≤ 2000; and H ≤ 0.27, n ≤ 1000 to avoid numerical
overflows in the calculation of the series.
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Figure 4: (a) Deviation between the slice-wise and two-dimensional solutions of the averaged

Sherwood number in wedges, (γ̄1/3−γ1/3)/γ1/3, versus H and for various β (indicated
on each curve). See also equation (47) and the discussion below for more detail. (b)
The three-dimensional (black symbols) and two-dimensional (solid lines) numerical
results shown in figure 9 for β = 1 and π/2 are reproduced here. The open symbols
and the dotted lines show the three-dimensional and two-dimensional numerical results
with increased resolution, at the same angles β, but for HD = 1 instead of HD = 15
in figure 9.
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Figure Resolution EP Notes
Pe Ny or Nr Nz or Nθ HD β Hf nmax

4(a) 106 400 40 0.1 - 30 16000 3D LP
4(b) 105 400 40 0.2 - 30 16000 3D LP
4(c,d) 104, 103 400 40 1 - 30 16000 3D LP
4(e,f ) 102, 101 400 40 5 - 30 16000 3D LP
4(g) 1 400 40 15 - 30 16000 3D LP
4(h) 10−1 400 40 5 - 30 16000 3D LP

5 106 400 40 0.1 - 30 16000 3D LP
5 105 400 40 0.2 - 30 16000 3D LP
5 104, 103 400 40 1 - 30 16000 3D LP
5 102, 101 400 40 5 - 30 16000 3D LP
5 1 400 40 15 - 30 16000 3D LP
5 10−1 400 40 5 - 30 16000 3D LP

6 10−3–104 400 40 1.25,5,15 - 1.25,5,15 16000 3D LP
6 10−3–104 25000 - 15 - 15 5000 2D SM

7(a,b) 104, 103 400 40 1 0.3 200 16000 3D LP
7(c) 102 400 40 2 0.3 200 16000 3D LP
7(d,e) 101, 100 400 40 10 0.3 200 16000 3D LP
7(f,g,h) 10−1, 10−2, 10−4 400 40 100 0.3 200 16000 3D LP

8 106 400 40 0.1 0.1-π/2 200 16000 3D LP
8 105 400 40 1 0.1–π/2 200 16000 3D LP
8 104, 103, 102 400 40 2 0.1–π/2 200 16000 3D LP
8 10, 1 400 40 10 0.1–π/2 200 16000 3D LP
8 10−1, 10−2, 10−3 400 40 100 0.1–π/2 200 16000 3D LP

9 10−6–104 400 40 15 0.01-π 15 16000 3D LP
9 10−6–104 25000 - 15 0.01-π 15 5000 2D SM

10 all shown 25000 - 1000 0.01 - π/2 1000 5000 2D SM

4(b) 10−3–107 12500 - 1 1, π 15 3000 2D SM
4(b) 10−3–107 400 40 1 1, π 15 16000 3D LP
4(b) 10−3–107 25000 - 15 1, π 15 5000 2D SM
4(b) 10−3–107 400 40 15 1, π 15 16000 3D LP

Table 3: Details about the numerical calculations of (41)–(42) for parallel channels and (61)–
(62) for wedges. Abreviations: EP - eigenpairs, LP - Lapack solver, SM - Shooting
method; HD is the domain height for the advection–diffusion problem; Ny and Nr are
the number of grid points in the y- and r-directions, and Nz and Nθ in the z- and
θ-directions; Hf is the channel height for the calculation of the velocity; and nmax is
the number eigenpairs used.

C. First-order correction in channels with a truncated wedge
geometry

C.1. Thin boundary layer regime

In equation (48) we change the variables from (x, r) to (ξ, η), with ξ = x1/3/β−1, which represents
the ratio of δ ∼ x1/3 and ri = β−1, and η = r/x1/3 the similarity variable for the advection–
diffusion equation at leading order. We obtain

∂2c

∂η2
+ γ

η2

3

∂c

∂η
+ ξ

(
η
∂2c

∂η2
+
∂c

∂η

(
1 + γ

η3

3

)
− γ η

3

∂c

∂ξ

)
− ξ2γ η

2

3

∂c

∂ξ
= 0. (67)

Substituting a Poincaré expansion: c(ξ, η) = c0(η) + ξc1(η) + . . ., we find at order ξ0

d2c0
dη2

+ γ
η2

3

dc0
dη

= 0, (68)
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which, as expected, leads to our modified Lévêque solution (28) (substituting (y, z) by (r, θ) and
with γ(θ) following (14)) and the flux (47). For n ≥ 1, we find

d2cn
dη2

+ γ
η2

3

dcn
dη
− nγ η

3
cn =

n−1∑
i=0

(−1)(n−i)η(n−1−i)
dci
dη

. (69)

The boundary conditions for (68) and (69) are

c0(η = 0) = 1, cn(η = 0) = 0, ∀n ≥ 1, and cn(η → +∞)→ 0, ∀n ≥ 0. (70)

The next term, at order ξ1, is

c1(x, r, θ) = − r

2x1/3
Γ(1/3, γ(θ)r3/(9x))

Γ (1/3)
. (71)

C.2. Thick boundary layer regime, sub-regime (i)

[1-8] Substituting η = r/x1/2 and ε = 1/x1/2 and using u = 1 +O
(
δ−2, β, (βδ)2

)
, (52) becomes,

at leading order, (
1 + η

β

ε

)
1

2

(
η
∂c

∂η
+ ε

∂c

∂ε

)
+

(
1 + η

β

ε

)
∂2c

∂η2
+
β

ε

∂c

∂η
= 0, (72)

with η = O(1), ε = O(1/δ) � 1 and β/ε = O(βδ) � 1. Using a two-parameter expansion:
c(η, ε) = c0(η)+εc11(η)+(β/ε)c12(η)+O

(
δ−2, β, (βδ)2

)
, we find at leading order c0 = Erfc(η/2),

similar to (35) in parallel channels as expected intuitively, and which satisfies the boundary
conditions c0(0) = 1 and c0(η → +∞) = 0. At the next order in O(ε),

d2c11
dη2

+
η

2

dc11
dη

+
1

2
c11 = 0. (73)

The solution is
c11 = K11e

−η2/4Erfi
(η

2

)
, (74)

with Erfi(·) the imaginary error function, and K11 a constant of order O(1), which we determine
below. The solution satisfies the boundary conditions c11(0) = 0 and c11(η → +∞) = 0.
Similarly, at order O(β/ε), c12 satisfies

d2c12
dη2

+
η

2

dc12
dη
− 1

2
c12 = −dc0

dη
. (75)

The solution is
c12 = −η

2
Erfc

(η
2

)
, (53)

which satisfies the boundary conditions c12(0) = 0 and c12(η → +∞) = 0. We can now compute
the Sherwood number including the corrections at order O(ε, β/ε),

Sh =
2√
π
Pe1/2 − K11√

π
Pe ln(Pe−1) +

β

2
, (76)

As β → 0, we must recover the result (36) in parallel channels. Hence, K11 = 0 and c11 = 0.
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