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Internal gravity wave fields are decomposed into temporal modes revealing the hierarchical7
structure of nonlinear wave–wave interactions. We present a novel fusion of Green’s8
functions for solving the forced internal wave equation with a weakly nonlinear perturbation9
expansion. Our approach is semi-analytical, based on integration over finite elements with10
the perturbation expansion ensuring source terms at each order are only dependent on the11
solutions at lower orders. Thus, the procedure is purely inductive and efficient to compute. To12
perform a thorough validation of our new method, we diagnose experiments using Synthetic13
Schlieren and apply sophisticated post-processing techniques, including Dynamic Mode14
Decomposition, to obtain these temporal modes for systems with discrete input frequencies.15
By decomposing the experimental field and comparing individual constituents against16
equivalents synthesised by our model, we are able to present the first truly comprehensive,17
validated, mechanistic picture of wave–wave interactions to arbitrary order. This synergy18
enables us to identify non-wave oscillatory behaviour at frequencies shared by waves in19
the hierarchy and leads us to discover an important open question regarding transmission20
efficiencywithin individual wave–wave interactions. Although our experiments are generated21
by boundary displacements, we present equivalences between source terms and boundary22
displacements so that the class of applicable systems may be broadened. Our technique23
also generalises to aperiodic and unbounded configurations and to any weakly nonlinear24
wave-governed system for which there is an available Green’s function.25

Key words: Internal waves, Ocean processes, Stratified flows, Topographic effects, Compu-26
tational methods, Wave scattering, Solitary waves27

1. Introduction28

The interior of the oceans may be considered as a vast field of internal gravity waves.29
Continuous stratification, gravitational forcing due to the lunar orbit (Rattray 1960) and30
suitable bathymetry conspire to produce a complex interior system of mechanical wave31
transmission. Amplitudes of these waves may be hundreds of metres (Susanto et al. 2005),32
but they are known to propagate at shallow angles and in beam-like geometric patterns. In33
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general, waveforms are modified by boundary topography (van Haren et al. 2002), and in34
particular, their spectral form is crucial to predicting their interaction. There are several well35
known features of internal wave mechanics that arise due to nonlinearity in the underlying36
physics, and primarily these arise from the quadratic structure of the advection operator.37
Viewed in spectral space, the advection operator may be cast as a geometric relationship38
between wavevectors and frequencies known as triadic interaction (Phillips 1960; Thorpe39
1966). Special cases include the interaction of two crossing wave beams (McComas &40
Bretherton 1977; Sun & Kunze 1999a,b; Javam et al. 2000; Tabaei et al. 2005; Smith &41
Crockett 2014), triadic resonant instability (Davis & Acrivos 1967; Martin et al. 1969;42
McEwan 1971; Bourget et al. 2013) and a limiting case known as parametric subharmonic43
instability (McEwan & Robinson 1975; Benielli & Sommeria 1998; Koudella & Staquet44
2006; Karimi & Akylas 2014). We will discuss in depth interactions of crossing wave beams45
as part of this paper, but we refer the reader to Dauxois et al. (2018) for a review of instabilities46
and Müller et al. (1986) for a broader overview.47
Experiments have played an important role in refining our understanding of internal48

wave systems ranging from early studies of oscillating cylinders (Görtler 1943; Mowbray49
& Rarity 1967) to complex mechanical devices for generating quasi-planar waves (McEwan50
1971; Gostiaux et al. 2007). There are broadly three approaches to analysing wave systems:51
characteristics, Green’s functions and Fourier methods. The oscillating cylinder is the natural52
analogue of characteristic (Hurley 1972) and Green’s function approaches (Hurley 1969;53
Voisin 1991), because spatially localised beams emerge in a St. Andrew’s cross pattern and54
these are aligned with the characteristics. On the other hand, Fourier methods more naturally55
correspond to quasi-planar systems (Mercier et al. 2010), where there is implicit spatial56
periodicity as well as temporal periodicity.57
In this paper, we shall build a more general framework based on Green’s functions and seek58

to validate using laboratory experiments, firstly on a polychromatic aperiodic example case59
of lee waves, and then develop to a case where steady, periodic wave beams show significant60
nonlinear interaction. The experiments utilise the unique capabilities of the “magic carpet”61
(Dobra et al. 2019) to generate a full spectrum of wave beams, Synthetic Schlieren (Dalziel62
et al. 1998; Sutherland et al. 1999; Dalziel et al. 2000; ?) to diagnose the resulting wave63
field from density gradients, and Dynamic Mode Decomposition (Schmid 2010) to dissect64
the modal structure. Using these tools, figure 1 illustrates a typical wave–wave interaction65
with two incident beams in subfigures 1(a) and 1(b) with direction of propagation shown66
by the arrows. Subfigure 1(c) shows a snapshot of the experimentally observed field, and67
subfigures 1(d)–(f ) show “daughter” modes that are observed to emerge nonlinearly from68
the interaction and have directions of propagation as shown.69
To address the question of nonlinear wave–wave interactions, our new framework will70

allow for weakly nonlinear interactions between a hierarchy of Green’s functions. We utilise71
Green’s functions to represent the driving waves and derive the weakly nonlinear transfer72
terms that pass energy into other frequency and wavenumber components, these also being73
represented in terms of Green’s functions. Our framework is sufficiently broad to deal not74
only with interactions of the form shown in figure 1 that lead to resonance (disturbances75
that satisfy both the geometric conditions on wavenumber and frequency and also satisfy76
the relevant dispersion relation) but also those where the linear dispersion relation is not77
satisfied.78
The structure of this article is as follows. We present the background material to the79

governing equations in §2 and discuss the tractability of other analytical options. Focussing80
on the monochromatic Green’s function solution to the linear equation in §3, we prepare the81
building blocks of a hierarchical numerical approach. In §4, we demonstrate application of82
this approach to inviscid, aperiodic systems, and carefully validate against experiments using83
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Figure 1: Schematic showing a decomposition of a wave–wave interaction between two
incident internal wave beams ((a) and (b)). Subfigure (c) shows the full experimentally

observed wave field. Subfigures (d)–(f ) show nonlinearly generated “daughter” modes that
are identifiable from the experiment. The arrows indicate the direction of propagation of

each wave beam.

our “magic carpet” (Dobra et al. 2019). We then generalise in §5 our numerical Green’s84
function approach so that we may capture the physics of nonlinearly interacting internal85
waves.We employ the perturbation expansion technique of Tabaei et al. (2005) and developed86
further in Dobra et al. (2021) to account for successive layers of wave–wave interactions and87
demonstrate that the resultant field compares well with experimental observations. Finally,88
in §6, we draw our conclusions.89

2. Internal wave equation90

We begin by considering two-dimensional, inviscid, linear internal waves in a quiescent,91
Boussinesq density stratification, ρ0(z). These restrictions closely approximate the conditions92
in our laboratory experiments, where it is particularly advantageous to consider flows with93
limited variation in the third dimension for ease of diagnosis. We define x = (x, z) as94
the horizontal and vertical coordinates with corresponding unit basis vectors {ex, ez }, and95
we assume there is no diffusion of mass or heat. Let t be time, u = (u,w) the velocity96
field, p′ the perturbation from hydrostatic pressure, ρ00 be the Boussinesq reference density,97
ρ′ (with |ρ′ | � ρ00) the perturbation from ρ0(z) and g gravitational acceleration. Then, the98
three nonlinear governing equations are the conservation of momentum (Euler equation),99

ρ00

(
∂u

∂t
+ u · ∇u

)
= −∇p′ − ρ′gez, (2.1)100

the conservation of volume (equivalent to incompressibility in the case of a homogeneous101
fluid),102

∇ · u = 0, (2.2)103

and consequently the conservation of mass may be written as104

∂ρ′

∂t
+ u · ∇

(
ρ0 + ρ

′) = 0. (2.3)105
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In the linear wave approximation, the two nonlinear terms arising from the advection operator106
u · ∇ are considered to be negligible. The remaining derivative operators can be isolated107
into a complex matrix P that acts on a state vector φ, say, and the system arranged into108
homogeneous form. Taking a single Fourier mode of φ with wavevector k = (k,m) and109
frequency ω, we can write110

φ = φ̂ ei(k ·x−ωt) . (2.4)111

The derivative operator, P, then takes the complex algebraic form P̂. For a homogeneous112

system, non-trivial symmetries are foundwhen the determinant |P̂ | = 0, and these correspond113
to resonant wave behaviours. From114

���P̂
��� = ω

2 −

(
−

g

ρ00

dρ0

dz

)
k2

|k |2
= 0 (2.5)115

arises a natural frequency, the buoyancy (Brunt–Väisälä) frequency,116

N =

√
−

g

ρ00

dρ0

dz
, (2.6)117

and by examining the geometry of k/|k |, the dispersion relation,118

ω = N cosΘ, (2.7)119

is obtained, whereΘ is the angle between wavevector k and the horizontal. Since this system120
is linear, any perturbation quantity χ satisfies the dispersion relation provided that121 (

ω2 |k |2 − N2k2
)
χ̂ = 0. (2.8)122

Taking the inverse Fourier transform yields the linear internal wave equation,123 (
∂2

∂t2∇
2 + N2 ∂

2

∂x2

)
χ = L χ = 0, (2.9)124

where we define L to be the corresponding operator. From any choice of χ, the polarisation125
of any other quantity can be derived by appropriate substitution into the linearised equations.126
In particular, any such quantity will also satisfy the linear internal wave equation.127
Source terms may be configured to be equivalent to the action of boundaries, and we will128

see in §5 that they can also inductively account for discrepancies between a linear wave129
approximation and the corresponding nonlinear field. Thus, we consider solution approaches130
to the inhomogeneous internal wave equation, L χ = f , with source distribution f (x, t).131
Whilewe could choose toworkwith any variable χ, it is important to select a representation132

of the system that has a clear physical interpretation. In view of this, two interesting choices133
of χ are an internal potential, ξ, as used by Voisin (1994) and Scase & Dalziel (2004), and134
the streamfunction, ψ. We now consider the physical interpretation of point source terms for135
each of these potentials in turn.136
The internal potential is defined by137

u =

(
∂2

∂t2∇ + N2ex
∂

∂x

)
ξ =

((
∂2

∂t2 + N2
)
∂ξ

∂x
,

∂3ξ

∂t2 ∂z

)
, (2.10)138

and is chosen such that ∇ · u = Lξ. We consider an instantaneous point source of unit139
strength at x0 that is active at time t0, expressed in terms of Dirac-δ functions as f =140
δ(x − x0) δ(t − t0). Integrating along a short time interval including t0 over some fixed141

Focus on Fluids articles must not exceed this page length
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volume V around x0 with boundary ∂V and using the divergence theorem gives142 ∫ t0+ε

t0−ε

∫
V

f dV dt =
∫ t0+ε

t0−ε

∫
V

Lξ dV dt =
∫ t0+ε

t0−ε

∫
∂V

u · dS dt, (2.11)143

which is the total volume of fluid ejected through enclosing surface, S. Therefore, the point144
source injects one unit of fluid volume.145
The streamfunction, ψ, is an integral of the velocity field according to146

u = ∇ ×
(
ψey

)
=

(
−
∂ψ

∂z
,
∂ψ

∂x

)
. (2.12)147

It follows immediately that the vorticity ∇× u = −∇2ψ, and it appears in the first term of the148
internal wave equation (2.9) if we set χ = ψ. Expressing the linear terms of (2.3) in terms149
of ψ, multiplying by g/ρ00 and differentiating with respect to x, we obtain150

N2 ∂
2ψ

∂x2 =
g

ρ00

∂2ρ′

∂x ∂t
. (2.13)151

The left-hand side appears in (2.9) and so we may integrate with respect to t to obtain the152
vorticity equation,153

−
∂

∂t
∇2ψ −

g

ρ00

∂ρ′

∂x
= 0, (2.14)154

which can also be derived directly from the linearised momentum equation. Vorticity in a155
fixed control volume changes only due to baroclinic generation or by the introduction of156
sources applied on the right-hand side of (2.14). For a source f = δ(x − x0) δ(t − t0) in the157
internal wave equation (2.9), the corresponding vorticity source in (2.14) may be expressed158
in terms of the Heaviside step function, H, as

∫
f dt = δ(x − x0) H(t − t0), which we may159

interpret as a supply of vorticity at unit rate after t0.160
While steady-state waves in any system violate causality, they provide a good approx-161

imation to their long term behaviour, so in practice, we use monochromatic sources of the162
form f = δ(x − x0) exp (−iωt). For the internal potential, ξ, the volume source is of unit163
amplitude and is in phase with f , and for the streamfunction, ψ, the vorticity is modified by164
a factor of −i/ω.165
With any choice of χ, one candidate approach uses Fourier transforms in both time and166

space (denoted by a circumflex) to yield the following algebraic equation,167

ψ̂ =
f̂

ω2 |k |2 − N2k2
, (2.15)168

Wenote however that the denominator is zero for any Fouriermodes that satisfy the dispersion169
relation, and these correspond to resonant modes. In common with a simple harmonic170
oscillator, the amplitudes of resonant modes grow linearly. This growth may occur in time,171
however over a broad class of wave equations that exist in multiple dimensions, growth may172
equally occur along spatial directions, and this remains the case for any linear combination173
of space–time directions (Dobra 2018). Although in the internal wave system each mode174
is a plane wave of infinite extent, a broadband linear superposition of such modes may be175
configured to produce an internal wave beam in space with finite width. Counterintuitively,176
there exists the limiting case of steady-state resonance, where all of the energy is transported177
away from the source and amplitude growth is found in purely spatial directions.178
Dobra (2018) combined these resonant waves with non-resonant forced oscillations to179

obtain an integral solution in terms of inverse Fourier transforms. However, exact solutions180
only apply to periodic domains, yet the experimental configurations we consider in §§4–5 are181
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best approximated by a combination of reflecting and non-reflecting boundary conditions,182
which Fourier methods do not in general support. Given that an intermediate aim in §3183
is to establish a numerical method with broad enough generality to handle aperiodicity in184
both space and time, we must explore alternative techniques for a computationally efficient185
implementation.186
One such approach uses a suitably chosen Green’s function, encoding the system response187

to a point source. A distribution of point sources in space and time may be configured to188
represent an arbitrary excitation of the system, and in this work we consider distributions that189
produce interference patterns representing both boundary displacements and mode–mode in-190
teractions. For the simplest point source, f = δ(x − x0) δ(t − t0), Sekerzh-Zen’kovich (1981)191
derived the instantaneous Green’s function by Fourier transforming in space only, solving192
the resulting ordinary differential equation in time and taking the inverse transform. Once193
again, however, we have non-vanishing solutions at the boundary, and in any finite domain194
(such as one requires to compute an approximate numerical solution), the Green’s function195
obtained using Fourier techniques encodes the response to a periodic array of isolated point196
sources. By instead using a sustained monochromatic source, f = δ(x − x0) exp (−iωt), we197
will obtain a solution in terms of elementary functions (see §3), so we will avoid difficulties198
with non-vanishing solutions at the boundary.199

3. Monochromatic Green’s function200

3.1. Analysis201

ThemonochromaticGreen’s function,Gω (x; x0), is the solution to the internalwave equation202
with point forcing as given by203 (

∂2

∂t2∇
2 + N2 ∂

2

∂x2

)
Gω exp (−iωt) = δ(x − x0) exp (−iωt). (3.1)204

Provided we have a solution for Gω , the solution to the internal wave equation with source205
distribution of the form f = fω (x, z) exp (−iωt) is206

χω (x) =
∫
R2

Gω (x; x0) fω (x0) d2x0, (3.2)207

where R is the set of real numbers.208
The precise form of the Green’s function depends on the configuration of the domain209

and boundary conditions. In the well-studied case of internal tides (e.g. Robinson 1969;210
Pétrélis et al. 2006; Balmforth & Peacock 2009), the appropriate Green’s function takes the211
form of a sum of normal modes. However, this is less general than the spatially unbounded212
case considered by Voisin (1991), who presented a comprehensive derivation of the three-213
dimensional Green’s functions. His work considered both instantaneous and monochromatic214
sources and considers in some depth the implications for causality of using Green’s functions215
for internal waves. Motivated by physical arguments, earlier work by Hurley (1969) quoted216
the two-dimensional streamfunction due to a monochromatic point vorticity source, which217
we identify as −iωGω in our own work, but this does not include the instantaneous source218
solution we discussed at the end of §2. This is important because instantaneous sources are219
potentially an attractive foundation for a semi-analytical model with sufficient generality to220
study both wave and non-wave perturbations to a density field. Unfortunately, there is no221
numerical method for an unbounded Fourier transform, and there are concerns over causality222
in the spatially periodic domain that we would require for a corresponding numerical method.223
The simplest causal foundation is the monochromatic source. We note in addition that both224
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Hurley and Voisin use exponential, rather than linear, density stratifications. The exponential225
form leads to a distinct interpretation of the buoyancy frequency, N , and the linear wave226
equation includes an additional term arising from the curvature of the stratification. The227
solutions are related by a conformal map. Given these points and further technical intricacies228
that are specific to the two-dimensional case and influenced our choice of integration scheme,229
there is some justification for presenting our own solution in preparation for a flexible, general230
numerical implementation.231
Our solution approach is summarised as follows, with full details in appendixA. Evaluating232

the time derivatives in (3.1), defining the constant Γ = (1 − (N/ω)2)1/2 and cancelling the233
temporal exponential terms yields234

Γ
2 ∂

2Gω

∂x2 +
∂2Gω

∂z2 = −
δ(x − x0)

ω2 . (3.3)235

We note that Γ is real for evanescent internal waves, |ω | > N , but is imaginary for |ω | < N .236
For Γ ∈ R, this elliptic equation is a skewed Poisson’s equation, and a dilatation allows us to237
use the free space Green’s function for the unskewed Poisson’s equation. Let r be the distance238
from the source in the transformed space so that239

r2 =
(x − x0)2

1 −
(
N
ω

)2 + (z − z0)2, (3.4)240

then the standard Green’s function for a source that will generate an evanescent wave is241

Gω = −
log

(
r2

)
4πω2Γ

. (3.5)242

Analytic continuation from |ω | > N to all ω ∈ R enables a solution to the corresponding243
hyperbolic equation, and wavepackets propagate along the real-valued characteristics, as244
discussed in Dobra et al. (2021). There are branch points where the argument of a logarithm245
or a number raised to a fractional power is zero or infinity, so the branch points are at246
r2 = {0,∞} and 1/Γ = {0,∞}, which gives the branch points247

ω = 0,±
N√

1 +
(
x−x0
z−z0

)2
and ± N . (3.6)248

The r2 = 0 branch points only occur where |ω | 6 N and are on the characteristics249
passing through x0. We assemble the Green’s function for each solution region in table 3250
in appendix A, where we classify by the complex argument of r2 and 1/Γ. By defining251
γ = ((N/ω)2 − 1)1/2 = tanΘ, as may be inferred from the dispersion relation (2.7), we252
condense all the propagating cases to253

Gω = i sgn (ω)
log

����
(
x−x0
γ

)2
− (z − z0)2����

4πω2γ
+

1
4ω2γ

H *
,

(
x − x0

γ

)2
− (z − z0)2+

-
. (3.7)254

For sources that generate evanescent waves, the Green’s function is real, so the response255
is in phase with the forcing. A contour plot of the Green’s function is shown in figure 2.256
As ω → ∞, or equivalently as N → 0, the elliptical contours broaden to become circular.257
In the limiting case, this is the unstratified potential flow response corresponding to our258
choice of χ. The contours of the streamfunction, ψ, always represent streamlines in the flow,259
whereas only in the case when the internal potential, ξ, is monochromatic and N = 0 do260
its contours coincide with those of the velocity potential, φ, as defined by u = ∇φ. The261
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Figure 2: Real component of the evanescent Green’s function for ω = 1.1N , which shows
(a) the streamlines and (b) contours of the internal potential, and the derived velocity
fields at t = 0. The velocity indicators have been scaled for plotting. The potentials and
their corresponding fluid speeds grow unboundedly at the origin. The imaginary part is

identically zero.

fundamental streamfunction flow is a monochromatic point vortex, whereas for the internal262
potential, it is a monochromatic volume source.263
For |ω | < N , we obtain propagating solutions with characteristics of gradient ±1/γ. The264

imaginary part of the Green’s function for ω = 0.5N is plotted in figure 3. The real part is265
piecewise constant with discontinuities across the characteristics.When |x − x0 | > γ |z − z0 |,266
the real part equals 1/(4ω2γ) and equals zero elsewhere.We see a St. Andrew’s Cross pattern267
analogous to that produced by a small cylinder undergoing vertical oscillations (Görtler268
1943; Mowbray & Rarity 1967). The potential and derived velocities grow unboundedly on269
approaching the characteristics, which is a consequence of the idealisations embedded in this270
model. Nonetheless, when integrated over point sources of zero area, a finite contribution is271
obtained in the same way that an integration over δ-functions produces a finite integral, a272
property we will exploit in §3.2.273
For |ω | < N , the logarithm can be decomposed into two characteristic coordinates,274

η± =

(
x − x0

γ

)
∓ (z − z0), (3.8)275

such that the η+ characteristics have positive slope and η− negative. The argument of the276

logarithm, ���r
2���, becomes a difference of squares because Γ2 < 0, so decomposes into the277

characteristic coordinates,278

���r
2��� =

�����

[(
x − x0

γ

)
− (z − z0)

] [(
x − x0

γ

)
+ (z − z0)

] �����
= |η+η− |. (3.9)279

Therefore, the logarithm splits into two linearly superposed components with no cross term,280

log ���r
2��� = log |η+ | + log |η− |. (3.10)281

The solution to a cylinder undergoing small vertical oscillations shares this decoupling into282
η± components (Hurley 1997). In the critical limit ω → N from below, the characteristics283
are vertical, which smoothly transition to the ellipses of contours with infinite aspect ratio in284
the limit ω → N from above.285
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Figure 3: Imaginary component of the propagating Green’s function for ω = 0.5N , which
shows (a) the streamlines and (b) contours of the internal potential, and the derived

velocity fields at time t = π/(2ω). The velocity indicators have the same scale as those in
the evanescent case (figure 2). The potentials and corresponding fluid speeds grow

unboundedly at the characteristics, with the largest ones, which would only be visible near
the origin, omitted for clarity. The real part is zero in the regions above both

characteristics and below both characteristics, and is 1/(4ω2γ) in the remaining regions to
the left of both characteristics and to the right of both characteristics.

3.2. Numerical implementation286

In §3.1, we derived the Green’s function for continuous independent variables and then287
provided an integral formula for χω over the distribution of point sources (3.2) that is not288
tractable to compute analytically. We now seek to use our Green’s function solution as the289
basis for a semi-analyticalmethod to evaluate the potential, χω , at arbitrary locations in space.290
We anticipate distributed sources, so the potential strength at any evaluation point in space291
will be composed of a linear superposition of solutions from all sources. Unfortunately, our292
solution has logarithmic singularities along the characteristics, and so any numerical method293
based on pointwise evaluation will suffer from unresolvable infinities. However, with careful294
treatment we may regularise these over finite integration elements, and thus we discretise the295
domain into elements of size ∆x ∆z. We account for the effect of integrating over an element296
by introducing a corresponding modified discrete Green’s function, GD (x; xD ), and source297
distribution, fD (xD ), where the centres of such elements are at xD , so that298

χω (x) =
∑
xD

GD (x; xD ) fD (xD ). (3.11)299

While much of what follows is required to determine GD , we may simply take fD (xD ) =300
(1/(∆x ∆z))

!
fω (x0) d2x0, integrated over the element. For smooth source distributions,301

we make the approximation fD (xD ) ≈ fω (xD ). If instead there is an isolated δ-function302
source of strength q that lies somewhere within the element, the mean source density is303
fD = q/ (∆x ∆z). Correspondingly, a smooth line source distribution of the form fω =304
q(x) δ(z − z0) has mean density fD ≈ q(xD )/∆z.305
We note in passing that a transformed coordinate system in

(
η+, η−

)
aligns with the306

characteristic directions of propagating waves, |ω | < N , but no single coordinate system307
would be optimal for a polychromatic wave field as highlighted in §4. Thus, we opt to308
discretise a regular Cartesian grid in (x, z).309
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The Green’s function only depends on the displacement from the source to the evaluation310
point, so by moving the reference frame to the centre of the finite element enclosing the311
source, xD , we may define a continuous variable x ′ = x − xD over which we may integrate312
to determine GD for all elements. Since the grid is regular, then for a given frequency we only313
need to calculate the Green’s function once for each relative displacement. Then, we translate314
the resulting array of values according to xD when evaluating the summation for χω (3.11),315
truncating any values that fall outside the numerical domain.316

We choose approximate formulae for each element in the Green’s function matrix, GD ,317
according to the classification in figure 4. The figure only shows elements in the first quadrant,318
with the other quadrants deduced by symmetry. In the remainder of this section, we explain319
the decision points and formulae referenced in the figure.320

Except at the source and elsewhere near its characteristics, the continuous Green’s function321
is regular and may be approximated by a Riemann sum of the form322

GD (x; xD ) ≈ Gω (x; xD ) ∆x ∆z. (3.12)323

For |ω | > N , the only singular element is that which encloses x ′ = 0, and in this case the324
integral is given by325

GD (xD; xD ) =
∫ ∆x/2

−∆x/2

∫ ∆z/2

−∆z/2
−

log
((

x′

Γ

)2
+ z′2

)
4πω2Γ

dz′ dx ′. (3.13)326

The dominant contribution to the integral comes from the logarithm close to the singularity,327
so we approximate the integral on the rectangular element by an ellipse of equivalent area.328
After dilatation, the radius, R, of the resulting circle is given by πR2 = ∆x ∆z/Γ. We329
re-express the Green’s function in polar coordinates,330

GD (xD; xD ) ≈
∫ 2π

0

∫ R

0
−

log
(
r2

)
4πω2Γ

r dr dθ. (3.14)331

Integration by parts gives332

GD (xD; xD ) ≈
∆x ∆z

4πω2Γ2

(
1 − log

∆x ∆z
πΓ

)
. (3.15)333

For the case where internal waves may be generated, |ω | < N , the imaginary part of the334
Green’s function decomposes into the sum of two linearly independent components (3.10),335
one for each characteristic direction. Using symmetry, singular elements along the x ′ or336
z′ axes intersect both characteristics (the case of two characteristics in figure 4). Conversely,337
singular elements away from the axesmay only intersect one characteristic.We calculate each338
η± component of GD separately and then add them together. For elements significantly away339
from the corresponding characteristic, η± = 0, the component of the Green’s function varies340
approximately linearly across the element and we invoke the centre-value approximation for341
a regular point (3.12). Otherwise, when the characteristic passes through an element or close342
to one of its corners, we approximate this component of GD using integrals as follows.343

Let us consider the η+ component for a singular element, and define ηR and ηL to be344
the maximum and minimum values respectively of η+ = x ′/γ − z′ in this element. The345
displacement of the element, x ′, is defined by the position of its centre. Because the level346
sets of η+ are lines of positive gradient and η+ is increasing in x ′, the maximum value of η+347

Rapids articles must not exceed this page length
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Element classification

Regular

(3.12)

or

Singular

|ω | > N

(3.15)

|ω | < N

2 characteristics
Im{η±}: (3.17)

1 characteristic
Im{η+}: (3.17)
Im{η−}: (3.12)

Source

Re: row 1 Re: row 2

Opposite sides

Re: row 3 Re: row 4

Adjacent sides

Re: row 5 Re: row 6

Adjacent sides

Re: row 7 Re: row 8

Opposite sides

Re: row 9 Re: row 10

Figure 4: Classification of finite element types in the first quadrant showing the
breakdown according to whether Gω remains finite within the element, whether
propagating or evanescent and by the geometry of the intersections between

characteristics and the element boundary. The thumbnail images show Re{Gω }, which
equals 1/(4ω2γ) in the shaded regions and zero elsewhere. Formulae for evaluating GD
are given for each case, and the areas for calculating Re{GD } in the propagating case are

referenced by their row numbers in table 1.

occurs in the bottom-right corner of the element and the minimum in the top-left corner, so348

ηR = η+

(
x ′ +
∆x
2
, z′ −

∆z
2

)
=

x ′ + ∆x2
γ

−

(
z′ −
∆z
2

)
, (3.16a)349

ηL = η+

(
x ′ −
∆x
2
, z′ +

∆z
2

)
=

x ′ − ∆x2
γ

−

(
z′ +
∆z
2

)
. (3.16b)350

351

We approximate the contribution across the element by integrating over a rectangle aligned352
with the characteristic that intersects the element corners where η+ = ηR and η+ = ηL , and353
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then scale the value by the ratio of areas. The contribution to GD is approximately355 (
∆x ∆z
|ηR − ηL |

) (
i

4πω2γ

∫ ηR

ηL

log |η+ | dη+
)

=

(
∆x ∆z
|ηR − ηL |

) (
i

4πω2γ

) (
ηR

(
log |ηR | − 1

)
− ηL

(
log |ηL | − 1

))
,

(3.17)356

after integration by parts, where we clarify that η log η = 0 when η = 0. By symmetry, the357
same expression holds for the singular contribution due to η− terms.358
This leaves the real part of Gω to consider. It is only nonzero in the regions to the left359

and to the right of the source bounded by the characteristics, which are shown for the first360
quadrant as shaded regions in figure 4. The real part of the integral over the element is361
given by 1/(4ω2γ) multiplied by the shaded area. We present in table 1 the formulae for all362
permutations of shaded area expressed in the x ′ coordinate system centred on an element.363

4. Application to aperiodic configurations364

4.1. Introduction365

Internalwaves are frequently generated bymoving boundaries. For example, in the laboratory,366
McEwan (1971, 1973) used articulated paddles andGostiaux et al. (2007) used rotating cams,367
but these are best suited to monochromatic excitations. We installed a “magic carpet” (Dobra368
et al. 2019) in the base of our tank, which has more general possibilities for excitation.369
Likewise, we generalise our numerical method for a single frequency, χω exp (−iωt),370
described in §3 to those that have a continuous spectrum of frequencies.371
For a distribution of sources f (x, z, t) =

∫
fω (x, z) exp (−iωt) dω, we may write372

χ(x, t) =
∫
R

exp (−iωt)
"
R2

Gω (x; x0) fω (x0) d2x0 dω. (4.1)373

Our numerical method allows replacement of these integrals with the discrete Fourier374
transform, and thus we may approximate general wave fields. We summarise our procedure375
in algorithm 1. In the special case of a discrete set of input frequencies, we no longer need376
to resolve the Fourier transform and all the frequencies can be represented exactly.377
In our model, we consider flexible boundaries as sources of either volume or vorticity.378

As we saw in §2, source terms in the internal wave equation for internal potential and379
streamfunction represent volume and vorticity sources respectively. We now derive formulae380
for the source terms of both potentials, ξ and ψ, to describe each temporal mode of an381
arbitrary vertical displacement of a horizontal boundary.382

4.2. Representing active boundaries with finite element sources383

In both cases, we can readily derive volume fluxes for amonochromatic source of unit strength384
by integrating the Green’s function, so we rescale these fluxes to match a discrete physical385
representation of a short distance along the boundary. The rescaling factors are collectively386
the required distribution of sources along the entire length of the boundary. Here, we outline387
themethod and summarise key results; see §§4.2.1–4.2.2 for full derivations. Throughout this388
section, all sources are at the zero-height of the magic carpet, so without loss of generality389
we take z0 = 0.390
Weseek to determine the volumeflux,Q(t) = Qω exp (−iωt), induced by amonochromatic391

source of unit strength across a transect of the domain. For the internal potential, the transect392
is a horizontal line at z > 0 ranging from x = −∞ to +∞, across which the flux amplitude393
Qω =

1
2 .Whereas, the corresponding transect for the streamfunction is a vertical line segment394



A hierarchical decomposition of internal wave fields 13

Case Criterion Shaded area

1 x′ = 0
∆x 6 γ∆z

(∆x)2

2γ

2 x′ = 0
∆x > γ∆z ∆x ∆z − γ(∆z)2

2

3 x′ , 0, z′ = 0
��x′�� + ∆x2 6 γ ∆z2

2 |x′ | ∆x
γ

4 x′ = 0, z′ , 0
∆x
2 > γ

(��z′�� + ∆z2
) ∆x ∆z − 2γ��z′��∆z

5
x′ , 0, z′ = 0
��x′�� − ∆x2 6 γ ∆z2
��x′�� + ∆x2 > γ ∆z2

∆x ∆z − 1
γ

(��x′�� − ∆x2 −
γ∆z

2
)2

6
x′ = 0, z′ , 0
∆x
2 > γ

(��z′�� − ∆z2
)

∆x
2 < γ

(��z′�� + ∆z2
) 1

γ

(
∆x
2 − γ

(��z′�� − ∆z2
))2

7
x′ , 0, z′ , 0
��x′�� − ∆x2 6 γ

(��z′�� − ∆z2
)

��x′�� + ∆x2 6 γ
(��z′�� + ∆z2

) 1
2γ

(��x′�� + ∆x2 − γ
(��z′�� − ∆z2

))2

8
x′ , 0, z′ , 0
��x′�� − ∆x2 > γ

(��z′�� − ∆z2
)

��x′�� + ∆x2 > γ
(��z′�� + ∆z2

) ∆x ∆z − 1
2γ

(��x′�� − ∆x2 − γ
(��z′�� + ∆z2

))2

9
x′ , 0, z′ , 0
��x′�� − ∆x2 > γ

(��z′�� − ∆z2
)

��x′�� + ∆x2 6 γ
(��z′�� + ∆z2

) ∆x
γ

(��x′�� − γ
(��z′�� − ∆z2

))

10
x′ , 0, z′ , 0
��x′�� − ∆x2 6 γ

(��z′�� − ∆z2
)

��x′�� + ∆x2 > γ
(��z′�� + ∆z2

) ∆z
(��x′�� + ∆x2 − γ��z′��

)

Table 1: Shaded area of each type of singular element centred on x′. These thumbnails are
shown for quadrant 1; other quadrants are deduced by symmetry. It is helpful to observe
that ��x′�� = γ��z′�� on the characteristics. In cases 7–10, in addition to the given criteria, we
explicitly require that a characteristic passes through the element: in the first and third
quadrants, only the η+ characteristic may intersect the element, but in the second and

fourth quadrants, only the η− characteristic may intersect it. These areas are multiplied by
1/(4ω2γ) to give Re{GD }.

to the right of the wave maker ranging from z = 0 to +∞, across which Qω = 1/(4ω2γ). In395
both cases, we find that the component of the Green’s function flow satisfying the conditions396
imposed by the physical model of the magic carpet is in phase with the forcing, Re{Qω }, and397
are line jets along the characteristics, which can be represented by δ-functions.398
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Input: f (x, t), N
Result: χ(x, t)

χ ← 0
for ω ∈ R do

fD (x) ← ∆t
2π

∑
t f (x, t) exp (iωt)

// Calculate discrete Green’s function using figure 4
GD ← table

(
2Nx − 1, 2Nz − 1

)
// Set up lookup table

foreach
(
i, j

)
∈ GD do

if Regular element then GD
(
i, j

)
= (3.12)

else // Singular element
if |ω | > N then GD

(
i, j

)
= (3.15)

else // |ω | < N
foreach Characteristic do

if Element intersection then Im
{
GD

(
i, j

)}
= (3.17)

else Im
{
GD

(
i, j

)}
= (3.12)

end
Re

{
GD

(
i, j

)}
= 1

4ω2γ
× (shaded area: table 1)

end
end

end
// Sum over sources according to (3.11)
χω ← table

(
Nx, Nz

)
foreach (k, l) ∈ χω do

χω (k, l) ← 0
foreach

(
i, j

)
∈ fD do

χω (k, l) ← χω (k, l) + GD
(
Nx + k − i, Nz + l − j

)
fD

(
i, j

)
end

end
χ ← χ + χω exp (−iωt)

end
Algorithm 1. Calculation of potential χ for an arbitrary source distribution f (x, t). It is calculated mode-
by-mode using the discrete monochromatic Green’s function, GD . At each frequency, we first evaluate fD
and GD , then finally we accumulate contributions to the potential field.

The total volume flux from one finite grid element of width ∆x and height ∆z that399
is centred on (x0, 0) and contains the distribution of monochromatic point sources f =400
fω (x, z) exp (−iωt) is401 ∫ x0+∆x/2

x0−∆x/2

∫ ∆z/2

−∆z/2
Qω fω

(
x ′, z′

)
exp (−iωt) dz′ dx ′ ≈ ∆x ∆z Qω fω (x0, 0) exp (−iωt).

(4.2)402
Then, we equate this expression with the corresponding volume flux, R(t) = Rω exp (−iωt),403
predicted by a physical model of volume displacement by the wave maker surface to obtain404
the distribution of sources,405

fω (x0, 0) =
Rω

∆x ∆z Qω
. (4.3)406
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For the internal potential, Rω = −iω∆x hω (x0), so fω (x0, 0) = − (2iω/∆z) hω (x0).407

Whereas, for the streamfunction, Rω = − (iω∆x/2) hω (x0), so fω (x0, 0) = −
(
2iω3γ/∆z

)
hω (x0).408

4.2.1. Internal potential409

For the internal potential, we determine the total vertical volume flux through a line of410
constant z , 0,411

Q(z, t) = Qω (z) exp (−iωt) =
∫ ∞

−∞

w(x, z, t) dx, (4.4)412

for the Green’s function when 0 < ω < N . The vertical velocity field, w, is given by413
∂3 (Gω exp (−iωt)

)
/∂t2 ∂z and thus w = −ω2 (∂Gω/∂z) exp (−iωt). Applying the chain414

rule to Gω (3.7) when z0 = 0, we obtain415

∂Gω

∂z
= −i

z

2πω2γ
[(

x−x0
γ

)2
− z2

] − z
2ω2γ

δ*
,

(
x − x0

γ

)2
− z2+

-
. (4.5)416

Along a path of constant z (where z , 0) as shown in figure 5, the imaginary part has two417
simple poles, x = x0 ± γz, which are where the path crosses the characteristics of Gω , and418
∂Gω/∂z asymptotes inverse-linearly towards them. Between the poles (in the line segment419
containing x = x0), sgn (Im{∂Gω/∂z}) = + sgn (z), and outside the poles (where x → ±∞),420
sgn (Im{∂Gω/∂z}) = − sgn (z). Thus, we may use the Cauchy principle value to regularise421
Qω at each pole. The imaginary part exhibits even symmetry about x = x0, so it suffices to422
consider only half of the domain and double the result,423

Im
{
Qω (z)

}
= lim
ε→0




z
πγ

*..
,

∫ x0+γz−ε

x0

dx(
x−x0
γ

)2
− z2

−

∫ ∞

x0+γz+ε

dx(
x−x0
γ

)2
− z2

+//
-



. (4.6)424

Factoring out z2 and using the substitution p = (x − x0)/
(
γz

)
leaves425

Im
{
Qω (z)

}
= lim
ε→0

{
1
π

(∫ 1−ε/(γz)

0

dp
p2 − 1

−

∫ ∞

1+ε/(γz)

dp
p2 − 1

)}
. (4.7)426

The scaling on the limit variable, ε , is the same for both integrals, so we may replace the427
corresponding limits on the integrals by 1 ∓ ε . Then, evaluating the definite integrals yields428

Im
{
Qω (z)

}
= lim
ε→0




1
2π

*
,

[
log

1 − p
1 + p

]1−ε

0
−

[
log

p − 1
p + 1

]∞

1+ε

+
-



= 0. (4.8)429

Next, we consider the integral over the δ-function in the real part. Along a path of constant z,430
the argument of the δ-function has two simple zeroes, y1,2 = x0 ± γz, for which we use the431
standard formula,432

δ
(

f (x)
)
=

2∑
k=1

δ
(
x − yk

)
����

d f
dx

���yk
����

. (4.9)433

Here, d f /dx = 2(x − x0)/γ2, so we have434

Re
{
Qω (z)

}
=

∫ ∞

−∞

z
2γ

*...
,

δ
(
x −

[
x0 + γz

] )
����

2
γ2 γz

����

+
δ
(
x −

[
x0 − γz

] )
����−

2
γ2 γz

����

+///
-

dx. (4.10)435
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x

z

Integration path

x = x0 + γzx = x0 − γz

Poles of
∂Gω
∂z

x0

Figure 5: Integration path for calculating the volume flux, Q, for the internal potential,
showing the locations of the poles in the imaginary part of ∂Gω/∂z, which are also the

locations of the singularities in the real part.

Each δ-function contributes a value of one to the integral and z/ |z | = sgn (z), so436
Re

{
Qω (z)

}
= 1

2 sgn (z). Therefore, Q(z) = 1
2 sgn (z) exp (−iωt).437

The total vertical volumeflux through a horizontal transect is half the strength of the internal438
potential point source and is in phase with the source. The flux has a vertical component439
everywhere except z = 0 and points away from the source when the source is positive.440
Closing a rectangular contour along z = ±z0 and x = ±∞, symmetry arguments determine441
that the vertical integrals at x = ±∞ are both zero and integration along the horizontal edges442
doubles due to the direction in which they are taken. Thus, a monochromatic point source of443
internal potential of unit strength forces the internal wave equation such that the total volume444
flux is monochromatic and of unit strength.445
We remark that this result also applies to a corresponding integral when the Green’s446

function is for the streamfunction,447 ∫ ∞

−∞

−u dx =
∫ ∞

−∞

∂Gω

∂z
dx =

1
2

sgn (z) exp (−iωt). (4.11)448

Using the same rectangular contour, we obtain the circulation around the point source to449
be 1

2 exp (−iωt). Letting z → 0 so that the area enclosed in the contour tends to zero and450

invoking Stokes’ theorem shows that the source is a point vortex of strength 1
2 exp (−iωt).451

Similar to a resonant simple harmonic oscillator, there are components of the internal452
potential field both in phase to the forcing and with a phase lag of a quarter oscillation behind453
the source. Here, the in-phase response ensures the conservation of volume by generating454
line jets only and exactly along the characteristics, while the phase-lagged response has zero455
net volume flux despite inducing a flow over the whole domain.456
Physically modelling the wave maker, the upwards volume flux generated by an element457

with vertical displacement h, as shown in figure 6, is458

R(t) =
∫ x0+∆x/2

x0−∆x/2

∂h
∂t

dx ′, (4.12)459

which is approximately equal to −iω ∆x hω exp (−iωt) for small elements. Substituting this460
into the formula for the required element source strength (4.3) yields the required source461
strengths for use in the discrete Green’s function, fω (x0, 0) = − (2iω/∆z) hω (x0).462

4.2.2. Streamfunction463

When the Green’s function represents the streamfunction, the volume flux across any464
horizontal or vertical transect is zero, because sources in the streamfunction internal wave465
equation are vortices. Instead, since the volume flux across a path is equal to the difference466
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x0 − ∆x x0 x0 + ∆x
z = 0

∂h
∂t

�����(x0,t)

Figure 6: Finite element of width ∆x representing wave maker displacement at a single
location. We use this model to calculate the induced vertical volume flux required for
sources to the internal potential, which is ∆x ∂h/∂t |(x0,t) . The vertical dashed lines

indicate the element centrelines.

x′ − δx x′ x′ + δx
z = 0

∂h
∂t

�����(x′,t) ∆x
2
∂h
∂t

�����(x′,t)
∆x
2
∂h
∂t

�����(x′,t)

Figure 7: Infinitessimal element representing wave maker displacement at a single
location, assuming the profile to be linear between sample points δx apart and the domain
to have a rigid lid. We use this model to calculate along-wave maker gradients of induced
horizontal volume flux, whose integrals are required for finite sources of width ∆x to the

streamfunction.

between the values of the streamfunction at each end, we note that the real part of the volume467
flux induced by Gω (3.7) across any semi-infinite vertical line from z = 0 to z = ∞ for468
constant x is Qω = 1/(4ω2γ). The point vortex is in phase with the source, so it is not469
necessary to consider the imaginary part.470
For the physical model, we consider a wave maker profile that is spatially sampled every δx471

and is zero everywhere except at one sample point, x = x ′, as shown in figure 7. We472
assume that the wave maker is piecewise linear between the sample points. The rightwards473
volume flux generated to the right of the displaced infinitesimal element is R(x ′ + δx, t) =474
(∆x/2) ∂h/∂t |(x′,t) . Conversely, the rightwards volume flux to the left of the element is475
R(x ′ − δx, t) = − (∆x/2) ∂h/∂t |(x′,t) . In the continuum limit, we have476

∂R
∂x

�����(x′,t)
= lim
δx→0

R(x ′ + δx, t) − R(x ′ − δx, t)
2 δx

=
1
2
∂h
∂t

�����(x′,t)
. (4.13)477

Integrating such point contributions over a finite element of width∆x centred on (x0, 0) gives478
the total horizontal volume flux across one source element,479

R(x0, t) =
∫ x0−∆x/2

x0−∆x/2

1
2
∂h
∂t

dx ≈
∆x
2
∂h
∂t

�����(x0,t)
, (4.14)480

to leading order in∆x. Thus, Rω = − (iω∆x/2) hω (x0) and fω (x0, 0) = − (2iω3γ/∆z) hω (x0).481
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4.3. Boundary considerations482

Nonzero-frequency internal waves in a finite domain will inevitably reflect off the top and483
bottom. In both cases, the fluid cannot flow across the boundary, so we take w = 0 as the484
boundary condition and exploit the characteristic structure of internal waves to enforce it.485
The required potential, χ, for the reflected wave is calculated along the boundary and then486
projected along its characteristics using an approach introduced in Dobra et al. (2021). The487
characteristics of the reflected wave are oriented in the opposite vertical, but same horizontal,488
direction as the incident wave.489
For the internal potential in a monochromatic flow, w = −ω2 ∂ξ/∂z and on the boundary,490

the reflected wave may take the same value of the internal potential as the incident wave.491
By contrast, the vertical velocity is obtained from the streamfunction as w = ∂ψ/∂x, giving492
ψ = const. on the boundary, so we require that the reflected streamfunction is the negative493
of the incident. In both cases, we set the gauge constant to zero for convenience.494
Evaluating χ only on the boundary is insufficient to deduce the horizontal direction of495

incident characteristics. A wave field of a particular frequency may contain waves in all496
directions, so we use a principal axes transformation to decompose the incident wave field497
into left- and right-travelling waves according to the direction of the gradient vector (Dobra498
2018, pp. 37–39) and reflect each component in turn.499
The interference pattern arising from the distribution of sources generates the desired500

wave field, but where the source array is abruptly truncated, powerful harmonics are emitted501
and they may contaminate the solution within the domain. To reduce the severity of such502
truncation, we smoothly reduce the source strength to zero at the lateral extremities of the503
calculation domain according to a C3-continuous ramp that extends well beyond the field of504
view. Similarly, we use a significantly extended temporal domain for the Fourier transform505
to avoid periodic reflection in time activity that is aperiodic and short in duration.506

4.4. Experimental method507

The Arbitrary Spectrum Wave Maker (ASWaM, Dobra et al. 2019) is a flexible section508
1 m long and flush with the base of a tank that is 11 m long, 0.255 m wide and 0.48 m deep.509
The magic carpet’s shape is controlled by an array of 100 linear stepper motors positioned510
at a pitch of 10 mm, each with a vertical resolution of 0.0127 mm and a stroke of 48 mm.511
The surface of the wave maker is a nylon-faced neoprene foam sheet of thickness 3 mm.512

The material has some resistance to bending, but the attachment mechanism is designed to513
minimise the tensile stress in the sheet and the bending moments on the actuating rods. We514
model the surface deformations at each instant, h(x, t), as satisfying515

Es3

12
∂4h
∂x4 − T

∂2h
∂x2 = p∗, (4.15)516

where E is Young’s modulus, s is the sheet thickness, T is the longitudinal tension in the517
sheet and p∗ is the pressure difference across the sheet, normally taken as zero. Defining518
λ = (12T/(Es3))1/2, this equation has eigensolutions f (x) = [1 x cosh λx sinh λx]T.519
For our magic carpet, we find that λ ≈ 400. These solutions differ from the typical Euler–520
Bernoulli linear beam by the presence of hyperbolic functions instead of cubic polynomials,521
and these differences arise from longitudinal tension. Defining a vector of constants b to522
be determined by the rod heights and enforcing C2-continuity, the general solution between523
each rod is h(x) = b · f (x). Combining the boundary conditions for all sections of the wave524
maker gives a linear system of equations with constant coefficients, which can be easily525
inverted numerically.526
We fill the tank using the double bucket method (Fortuin 1960; Oster 1965) with a linear527
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density stratification in brine producing a constant buoyancy frequency N = 1.45 rad s−1.528
We observe density perturbations using Synthetic Schlieren, an optical technique (Dalziel529
et al. 1998; Sutherland et al. 1999; Dalziel et al. 2000). A static, random pattern of black530
and white dots is displayed on a 4k (UHD) television screen measuring 1.4 m (55′′) on the531
diagonal that is 0.2 m behind the tank, following Sveen & Dalziel (2005). The light rays532
emitting from the screen bend as they pass through the varying refractive indices in the tank,533
and the distorted images are recorded at 4 fps on a 12-megapixel ISVI IC-X12CXP video534
camera located 3.8 m in front of the tank. A pattern-matching algorithm in the software535
package DigiFlow (Dalziel Research Partners 2018) is used to reconstruct the gradient of the536
density perturbation from the recorded images, and we plot its horizontal component, which537

is related to the internal potential according to
(
1/ρ00

)
∂ρ′/∂x =

(
N2/g

)
∂3ξ/∂x ∂z ∂t.538

4.5. An example: atmospheric lee waves539

A travelling solitary hump is perhaps the simplest aperiodic waveform, directly analogous540
to flow over an isolated mountain ridge (Dalziel et al. 2011). In our experiments, the fluid541
is stationary in the tank, so boundary layers do not form upstream and we obtain cleaner542
waveforms.543
We seek to validate our numerical model in this configuration, and we choose to calculate544

the wave field using the internal potential, although we could equally obtain the same wave545
field using the streamfunction. Our hump consists of a complete wavelength of a sinusoid546
ranging from trough to trough, where the troughs are flush with the zero height of the547
magic carpet, with wavelength 0.081 m and peak-to-trough amplitude 0.028 m propagating548
to the right at U = 0.0357 m s−1. We use 1024 points spanning 50 s for the discrete Fourier549
transform, giving a frequency resolution of 0.13 rad s−1. The hump takes 2.3 s to pass any550
fixed location, which corresponds to a frequency of 2.8 rad s−1. With this adequate temporal551
resolution, we thus avoid spurious reflections in the time domain.552
The passing time of the hump corresponds to a frequency ratio of ω/N = 1.88, which553

is evanescent. Thus, it is clear that in this case the propagating modes will arise only from554
peripheral harmonics in the spectrum, an observation to which we will return in §5. Figure 8555
compares our experiments with the wave train predicted by our model.556
Firstly, from selective withdrawal of modes in our numerical prediction, we deduce that557

there are significant evanescent modes local to the hump, whose interference pattern is558
required to capture the structure of the wave train observed in the experiment.559
Secondly, we see disturbances spread across the domain, both in front and behind the560

hump. The waves ahead of the hump appear to be quasi-stationary and persist in the observed561
timeframe between six and eleven passing periods of the hump after its release. We conclude562
that these are not simply startup transients, and so we use geometric reasoning to understand563
the distribution of wave energy in the system.564
One common approach is to use the principle of stationary phase (e.g. Lighthill 1978)565

to restrict our analysis to elements of the wave field that move in phase with the hump.566
The solitary hump may be characterised as a broadband spectrum of modes all travelling567
with a common horizontal phase velocity, ω/k = U. It follows that for a given range of568
wavenumbers, k, there must directly correspond a range of frequencies,ω. Thus, any internal569
wave propagation generated by the hump has no preferential direction but must share the570
same horizontal component of phase velocity. The dispersion relation (2.7) constrains the571
magnitudes of all such wavevectors to the circle |k | = N/U. Consequently, for positive572
frequencies and upwards propagation, only fourth-quadrant wavevectors remain, and their573
corresponding group velocities point into the first quadrant. These modes comprise the574
majority of the observed signal, and their superposition results in curved phase lines.575
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Figure 8: Prediction and experiment comparing
(
1/ρ00

)
∂ρ′/∂x for a solitary sinusoidal

hump of height 0.028 m and width 0.081 m moving at U = 0.0357 m s−1. Each image is
separated by 5 s, and N = 1.45 rad s−1. The majority of the wave energy exists in waves
phased-locked with the hump, and these waves are restricted to a semicircular envelope,

indicated by the black arc. Wave energy to the right of the arc is carried by
non-phase-locked waves, but whose spectrum results in a quasi-steady pattern of waves
moving with the hump. There are also evanescent modes forming an interference pattern
near the hump, but due to discretisation of the temporal spectrum in our prediction, some
leakage of energy occurs along the wave maker surface but the response remains localised.

Furthermore, by following rays traced parallel to each mode’s respective group velocity,576
we may determine a propagation envelope for this class of quasi-steady wave. This envelope577
forms a semicircle joining the hump’s current and initial release locations (Dalziel et al.578
2011), as shown by black arcs in figure 8. These advancing semicircles grow in radius until579
the envelope asymptotically forms a vertical front.580
Clearly, both the experiment and the prediction contain waves propagating ahead of this581

envelope, so, as previously noted by Voisin (1994), the principle of stationary phase is582
insufficient to account for the whole wave field. Given that there is signal high above the583
wave maker and ahead of the hump, we deduce that these waves must have significant584
vertical component to their group velocity and therefore have nonzero frequency. Moreover,585
for internal waves the horizontal component of the group velocity is bounded above by the586
horizontal component of the phase velocity, and any observable wave ahead of the hump587
must have group velocity with horizontal component greater than U, so the same must also588
be true for its phase velocity. Although counterintuitive, it is possible for a composition of589
modes from a spectrum of phase velocities to form a quasi-steady wave field that translates590
with a single apparent phase velocity. Akin to the decomposition of a standing wave into591
opposing travelling waves, a carefully chosen difference of frequencies is sufficient to create592
the required behaviour, although many combinations of wavevector and frequency would593



A hierarchical decomposition of internal wave fields 21

0.040 m−1−0.04

(a) Prediction with reflection
coefficient of 1

(b) Prediction with reflection
coefficient of 0.6

(c) Experiment

0.6 0.8 1
m

Figure 9: Predictions assuming pure reflections (a) and with calibrated attenuation at the
free surface with coefficient 0.6 (b) compared to experiment (c). These correspond to

figure 8 at 25 s and show
(
1/ρ00

)
∂ρ′/∂x. Without attenuation, the predicted amplitude of

the wave field behind the hump is larger than observed. The reflection coefficient accounts
for energy dissipated at the free surface through mechanisms not directly modelled.

also produce an equivalent result. We conjecture that just such a superposition of modes is594
responsible for propagation ahead of the envelope shown in figure 8.595

We note that our approach requires the Fourier transform in time of the entire timeline.596
Since the source strengths are zero at all times except when the hump is passing, the ω-597
spectrum is broad. However, a discrete Fourier transform introduces discretisation error,598
which when inverted produces sources at unwanted times. We see their effect as forced599
oscillations along the magic carpet, which have insignificant effect on the rest of the wave600
field.601

Our wave propagation model does not directly account for energy leaving the modelled602
system during a reflection, yet is present in the experiments. We employed a line-search603
optimisation to determine suitable calibration parameters and accordingly modify the604
reflections at the free top surface by 0.6 while maintaining pure reflections at the solid605
bottom boundary. Figure 9 demonstrates the necessity of accounting for this energy loss.606
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5. Interactions of finite-width internal wave beams607

5.1. Introduction608

The literature on internal wave laboratory experiments can be divided into two broad609
lines of enquiry: work following from Görtler (1943) and Mowbray & Rarity (1967) on610
waves generated by a small oscillating body, and work on quasi-monochromatic line sources611
following McEwan (1971, 1973). The capability of our magic carpet allows us to span the612
range between these limiting cases, and although previous work using it (Dobra et al. 2021)613
validated new theoretical predictions in the line-source limit, we seek here to demonstrate614
the generality of these findings by applying them to an intermediate regime. We examine the615
interactions of finite-width wave beams a few wavelengths across, since recent explorations616
of such configurations (Smith & Crockett 2014) have uncovered a rich dynamical structure.617
We have unparalleled access to observe and analyse such wave fields processed first with618
Synthetic Schlieren and then with Dynamic Mode Decomposition (DMD, Schmid 2010).619
For the cases we consider here, DMD is an ideal tool because the frequency discretisation is620
responsive to the input, so it takes many fewer samples to accurately recover the dominant621
frequencies compared with Fourier methods which project onto basis functions at a fixed622
discretisation. Furthermore, DMD enables us to distinguish between steady-state behaviours623
and transient modes. Our experiments have been carefully configured so that steady-state624
behaviours dominate, and we do not observe the common unsteady phenomenon of triadic625
resonant instability.626

5.2. A series expansion for triadic interactions627

Building on the recent developments of Dobra et al. (2021), here we introduce a fusion of our628
perturbation expansion framework and the method of solution by Green’s function, enabling629
us to construct general wave fields from the interference patterns produced by a distribution630
of sources. In Dobra et al., the perturbation expansion at each order yields the internal631
wave equation in terms of the streamfunction with sources that are Jacobian determinants.632
Under particular symmetries, we found that these sources cancel, preventing a broad class633
of wave–wave interactions from occurring. Here, we instead consider configurations where634
these sources play a significant role in the structure of the wave field, and employing the635
Green’s function with the streamfunction potential, it integrates naturally. We now outline a636
generalisation of our perturbation framework for these arbitrary wave fields.637
We reformulate the conservation of momentum (2.1) and mass (2.3) in terms of stream-638

function, ψ, and buoyancy, b = −gρ′/ρ00,639

∂

∂t
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ψ,∇2ψ
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where the Jacobian determinant of two scalars, α and β, is given by643

�����
∂
(
α, β

)
∂(x, z)

�����
=
∂α

∂x
∂ β

∂z
−
∂α

∂z
∂ β

∂x
. (5.2)644

Eliminating the linear b terms leaves the nonlinear internal wave equation,645
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Nonlinearity associated with triadic interactions is captured by source terms of the form647
of Jacobian determinants, and here we consider their behaviour in the case648

ψ =

3∑
j=1

{
Aj exp

(
i
[
k j · x − ω jt

] )
+ A∗j exp

(
−i

[
k j · x − ω jt

] )}
, (5.4)649

where we require complex conjugate (∗) pairs to represent real wave fields. The source650
terms multiply pairs of waves, so we must consider each possible pairing in turn. Self651
interactions equate to zero (McEwan 1973; Tabaei & Akylas 2003; Dobra et al. 2021),652
but the interaction of beam j = 1 with beam j = 2 produces terms proportional to653
exp (i[(k2 + k1) · x − (ω2 + ω1)t]) and exp (i[(k2 − k1) · x − (ω2 − ω1)t]) and their com-654
plex conjugates. Thus, by index manipulation we may define655

k3 = k2 ± k1, (5.5a)656

ω3 = ω2 ± ω1. (5.5b)657658

Should this disturbance characterised by k3 and ω3 satisfy the dispersion relation (2.7),659
ω3 = N k3/|k3 |, the disturbance is also a wave and the source terms are an eigensolution660
of the internal wave equation (2.9). Such combinations are commonly described as resonant661
triads.662
We examine in figure 10(a) the geometric permutations of wave triad that may be663

constructed for a given k1, ω1 and fixed frequency ω2 but where wavevector k2 is664
unconstrained. These triangles are compatible with the selection rules derived by Tabaei665
et al. (2005) and Jiang & Marcus (2009) that determine into which quadrants, if any, a new666
wave beammay be emitted. These configurations are typical ofwave beams a fewwavelengths667
across for which the wavenumber spectra are broad. In these cases, the spectrum of the source668
terms is significant across a patch of wavevector space, as shown in figure 10(b). Wavevectors669
that lie on the dashed locus of dispersion-relation-satisfying k3 will resonate, and new waves670
will emerge by mode selection; these correspond to cases where the triangle of wavevectors671
can be closed.672
No polychromatic solutions containing multiple horizontal phase velocities are known for673

the fully nonlinear equation (5.3), so in Dobra et al. (2021), we performed a perturbation674
expansion to give a recursive algorithm that we can truncate at finite order to calculate an675
approximate solution. In this earlier work, we expanded ψ in powers of a small parameter, a,676
which we took to be the wave steepness. Instead, here we modify the expansion to be677
ψ =

∑∞
n=1 ψn, where each subsequent term drops an order of magnitude, and the expansion678

for b behaves correspondingly. Then, as our earlier work showed, each order satisfies679

∂2
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. (5.6)680

There is a cascade of information from lower order to higher, but not in reverse, thus the681
expansion is purely inductive. However, at all orders greater than three, there are contributions682
to frequencies that already exist at lower orders. There is an infinite series of such683
contributions to the wave field, some of which manifest as corrections to existing wave beams684
(as we will see later in figure 14) but may also generate waves propagating in new directions.685
We use the polarisation relation of linear internal waves to calculate b = N2

∫
∂ψ/∂x dt.686

5.3. Computational method687

We use a method based on integration across finite elements to predict the steady-state wave688
field due to two crossing internal wave beams, exploiting the symmetry of the complex689
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Figure 10: Wavevector triangles for the sum of frequencies ω1 + ω2 in the case

ω1 = 0.55 rad s−1 = 0.37N and ω2 = 1.5ω1. In (a), all permutations of wavevector
triangles are presented for the case where k1 points into the first quadrant. The triangles

for all other quadrants are obtained by reflective symmetry. From the dispersion
relation (2.7), each frequency has four possible directions for its wavevector, one in each
quadrant. Given k1, the loci of k2 and k3 will in general close to form a triangle in one of
four different ways. A closed triangle is a resonant triad. In (b), we plot in greyscale the

distribution of source term amplitudes in Fourier space for incident wavevector
distributions k1 (blue) and k2 (red). The resonant, propagating k3 lie at the intersections
of each of the dashed lines with regions of significant source amplitude. The remainder

produce a local interference pattern of forced oscillations. In this configuration, two waves
at ω3 are emitted: a weaker one with k3 pointing into the first quadrant (wave propagating

down and to the right, triangle marked in orange in (a)), and a stronger one with k3
pointing into the fourth quadrant (up and to the right, green triangle in (a)).

conjugate to avoid unnecessary execution. In the general case, we use a calculation domain690
of 346 × 57 elements with aspect ratio one, and incident waves are produced using an array691
of sources, following the method in §4. For these configurations, we plot

(
1/ρ00

)
∂ρ′/∂z =692 (

N2/g
) ∫ (

∂2ψ/∂x ∂z
)

dt.693

The source terms to the internal wave equation involve third-order derivatives, and any694
errors may propagate across the domain in spurious wave beams. These derivatives are695
recursively applied each time we increase the order of the perturbation expansion. In696
our calculations, we evaluate the expansion to third order and thus the original field is697
differentiated six times. To control numerical noise, we use ghost cells to employ eighth-698
order centred finite differences, and we perform one sweep of elliptic smoothing to eliminate699
mesh-scale truncation error in these derivatives. We take care to ensure that there is a700
separation of length scale between those of the input and those associated with the mesh,701
thus the smoothing has negligible effect on derivatives that contribute to the physics of the702
system.703
Where we look at the detailed physics of wave-wave interactions, we initialise the704

streamfunction with idealised waveforms corresponding to magic carpet displacement705
profiles,706

h = A exp (i[k x − ωt]) cos3
(
π

L
x
)

H
(

L
2
− |x |

)
. (5.7)707
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The amplitude of the wave, A, and the width of the envelope, L, are configured to match708
the experiments, which themselves are configured to approximate the asymptotic limit of a709
wave beam propagating in a viscous fluid (Hurley & Keady 1997; Sutherland et al. 1999).710
However, such waveforms have a broad spectrum including both left- and right-travelling711
waves (see Dobra et al. 2019). To produce a unidirectional wave, we nullify Fourier modes712
according to their sign and transform back into physical space, a procedure known as the713
Hilbert transform (Mercier et al. 2008). Then, we project this profile along the characteristics,714
using cubic spline interpolation to obtain element-centred values. For these calculations, we715
use a grid of 128 × 128 elements with aspect ratio that are non-unity.716

5.4. Experimental method717

Weuse the same experimental apparatus and diagnostics as §4. Tomaximise the amplitudes of718
the wave beamswithout inducing locally separated flow near themagic carpet, the amplitudes719
are increased linearly from rest before reaching a steady state. Data acquisition is performed720
over two minutes in this steady state. To build on the work of Tabaei et al. (2005), Jiang721
& Marcus (2009) and Smith & Crockett (2014), we seek to examine multiple orientations722
of incident wave beams and achieve these by exploiting reflections off the free surface, as723
shown in figure 11(a).724
Here, we use the technique of Dynamic Mode Decomposition (DMD, Schmid 2010)725

to identify the temporal modes of a video sequence. Closely related to proper orthogonal726
decomposition, the method takes an observable representation of the system’s state, y, and727
finds the best-fit system evolution operator, A, such that dy/dt = Ay when averaged over728
some period. If Y is composed of a temporal sequence of column vectors of states y and729

we let Y = UΣV T be its singular value decomposition, then Û may denote a truncation730
of U that only includes modes with important singular values. Performing an approximate731

principal axis transformation of A to the truncated basis Û and then an eigendecomposition732
of A in the new basis, we have733

A ≈ ÛÂÛT = ÛŴ Λ̂Ŵ−1ÛT. (5.8)734

The dynamic modes are the pairing ÛŴ , and generally they each have distinct complex735
conjugate pairs of eigenvalues, whose phases determine their frequencies. They may be736
independently evolved in time, but here we plot these modes evaluated at a common time737
origin.738

5.5. Results and discussion739

We begin by comparing our numerical prediction with the output of the Synthetic Schlieren740
in figure 11 using parameters as given in table 2. We highlight each visible wave beam741
schematically in figure 11(c) using the colours blue, red, green and orange to indicate742
successive orders of the perturbation expansion in §5.2. Our priority is to examine wave–743
wave interactions, and while there are many in this figure, the principal interaction zone744
is outlined by the grey box. Since this will be our region of focus for subsequent results,745
we take care to optimise the wave field geometry for diagnostic quality in this region. For746
our prediction to match well, we account for experimental artefacts such as weak viscous747
spreading of wave beams and some unavoidable curvature in the stratification near the top and748
bottom boundaries, so we make small perturbations to waves generated on the synthetic wave749
maker to ensure that waves incident to the boxed region have beam widths and amplitudes750
that match the experiment. Given comprehensive frequency-decomposed post-processing of751
experiments, we are able to perform a thorough calibration of the transmission efficiency752
from order to order. We find by line-search optimisation that it takes a globally constant753



26 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel
0.0850 m−1−0.085

(a)
Experiment

(b)
Prediction

(c)
Schematic

ω1ω1

ω 2ω 2

2ω
1

2ω
1

ω1ω1

ω = 0ω = 0

ω2 −
ω1

ω2 −
ω1

ω2 − 2ω1ω2 − 2ω1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
m

Figure 11: Geometry of wave beams in tank for intersecting two internal waves with the
same horizontal direction and opposite vertical direction of the group velocity.

Subfigure (a) shows our experiment, subfigure (b) shows our corresponding prediction,
and subfigure (c) shows a schematic of all visible wave beams with blue, red, green and

orange corresponding to first-, second-, third- and fourth-order waves respectively.
Beam 1, of frequency ω1 = 0.55 rad s−1 ≈ 0.37N , is generated at the left end of the wave
maker, then reflects off the free surface to intersect beam 2, of frequency ω2 = 2.2ω1.

Among others, a triadic interaction generates a third wave beam at frequency ω2 − ω1 in
the grey rectangle, which is the region of interest in subsequent figures. The diagnostic
shown is the vertical gradient of the normalised density perturbation,

(
1/ρ00

)
∂ρ′/∂z.

value of ∼ 1
2 across all interactions and all experiments. It remains an open question why754

the perturbation expansion requires such order-to-order calibration, but by matching our755
hierarchical decomposition with suitably post-processed experiments, we have identified a756
discrepancy that could not have been anticipated in advance.757
In the primary interaction zone, two significant new waves are emitted up and to the right:758

one at second order (shown in red in figure 11(c)) of frequencyω2−ω1 due to the interaction759
of beam 2 with beam 1, and the other at third order (shown in green) of frequency ω2 − 2ω1760
due to the interaction of the first additional wave with beam 2. Where the reflections of both761
beams 1 and 2 intersect, we note an interference pattern leads to a distortion of the phase762
lines in the bottom-right corner of the grey box.763
The left end of the magic carpet, just outside our diagnostic field of view in the experiment764

(and replicated in the numerical prediction), also emits a second harmonic for beam 1,765
which reflects off the free surface before interacting with its fundamental beam. From this766
interaction, an additional wave of frequency ω1 (shown in green in figure 11(c)) is emitted767
though here its direction is down and to the right. This beam reflects off the bottom boundary768
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Figure 11 12 13 14 15
N (rad s−1) 1.50 1.47 1.47 1.41 1.48

ω1 (rad s−1) 0.55 0.55 0.55 0.4 0.8
k1 (rad m−1) 39 26 36 48 80
A1 (mm) 2.8 1.8 1.4 1.8 2.6
L1 (m) 0.42 0.34 0.25 0.30 0.12

ω2 (rad s−1) 1.21 1.21 0.825 1.2 1.2
k2 (rad m−1) 121 110 75 −40 100
A2 (mm) 1.8 1.7 1.4 4.2 2.4
L2 (m) 0.26 0.18 0.15 0.14 0.11

Table 2: Parameters for each configuration considered, as defined by (5.7).

and also happens to intersect the primary interaction zone. Since the second harmonic is769
present only at second order (Dobra et al. 2021), this additional ω1 beam is third-order, so770
for a prediction truncated at third order, we do not include any of its interactions with other771
wave beams. Also visible in the experiment is a fourth-order zero-frequency wave (shown772
in orange) arising from the interaction of the first- and third-order waves of frequency ω1.773
While strictly zero-frequency modes cannot propagate, in the asymptotic limit, they closely774
resemble gravity currents generated by transient irreversible displacement of mass. Indeed,775
these also form near the bottom boundary, and we attribute this small aberration to boundary-776
layer mixing.777
On its third reflection, the second harmonic ofω1 intersects its fundamental oncemore, this778

time just after its own reflection off the free surface. We calibrate the strength of reflections779
in our predictions to account for surface wave transmission away from reflection sites, and780
we find an absorption coefficient of 30 %. Furthermore, evaporative cooling acts to smooth781
the top interface, which in turn creates complex reflection geometries; we account for these782
by applying a phase shift and a higher absorption coefficient of 55 % to beam 1 only.783
In figure 12 for a similar configuration, we expand out all the wave contributions at each784

order and frequency, and compare with the DMD of the experiment. We restrict the viewing785
window to the grey box in figure 11. The first row contains the superposition of all the wave786
beams at each order of truncation. At first order, there are no interactions, so we have only787
the linear superposition of incident waves. At second order, we obtain by triadic interactions788
a new pair of frequencies, ω2 − ω1 and ω2 + ω1.789
Eight triads are possible at third order, formed from each combination of a first-order and790

a second-order wave, and in each combination both difference and sum of frequencies may791
emerge. Four of these triads produce new frequencies, meanwhile there is a pair of triads792
from which will emerge new contributions to ω1 and a corresponding pair for ω2. The triads793
for ω1 are −(ω2 − ω1) + ω2 and (ω2 + ω1) − ω2, and for ω2, they are (ω2 − ω1) + ω1 and794
(ω2 + ω1) −ω1. For the configuration in this figure, these contributions are present but very795
weak and must not be confused with the third-orderω1 wave in the bottom-left that, similarly796
to figure 11, arises from the interaction of 2ω1 andω1 well to the left of the viewing window;797
we verified the wave direction in the experiment using the Hilbert transform. We also note798
that at third order, there are neither contributions to ω2 − ω1 nor ω2 + ω1; such additional799
contributions only appear from fourth order onwards.800
Of the new frequencies generated at third order, only ω2 − 2ω1 has appreciable amplitude.801

This propagating wave bends on the boundary of the interaction zone, because dominant802
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Figure 12: Hierarchical decomposition of the internal wave field where ω1 ≈ 0.37N and
ω2 = 2.2ω1. We plot the real part of evolutionary modes of the

diagnostic,
(
1/ρ00

)
∂ρ′/∂z, and for reference mark the parallelogram where the incident

waves cross with dotted lines. At first order in the expansion, we only obtain the incident
waves. At second order, we obtain ω2 − ω1 and ω2 + ω1. At third order, we not only
obtain four new frequencies, but we obtain new contributions to ω1 and ω2 that in this
configuration are small in amplitude but broaden the wave beams. There are no further

contributions to ω2 − ω1 and ω2 + ω1 until fourth order. The final column compares with
DMD, and the dashed grey boxes indicate where experimental noise obscured the
frequency from detection. We do not constrain the DMD to deliver prescribed

frequencies; the best-fit modes are always returned.
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wavevectors in the source terms do not satisfy the dispersion relation so the associated803
modes are confined as forced oscillations, meanwhile the slightly weaker resonant modes804
are preferentially selected and propagate away from the interaction zone. We also note other805
artefacts visible in both the experiment and the prediction at this frequency. The other three806
new frequencies are evanescent and are too weak to have significant singular values when807
computing the DMD, so we represent these missing modes by boxes with dashed borders.808
As noted by Bourget et al. (2014), the amplitudes of new propagating waves, such as ω2 −809

ω1, grow linearly across the interaction zone where the source terms are large. Outside this810
zone, propagating over an area with insignificant sources, they have approximately constant811
amplitude. Conversely, forced oscillations have amplitudes that are proportional to the local812
source terms. In this example,ω2+ω1 > N and produces weak evanescent modes that decay813
exponentially with distance from the interaction zone, so we amplify its images by a factor814
of ten. We see a second generation zone of this mode where the reflection of ω2 intersects815
ω1 again in the bottom-right of the domain.816
Figure 13 is similar to the previous two cases, but configured such that ω2 + ω1 < N .817

This mode is emitted to the right both upwards and downwards, but the upwards-propagating818
mode is stronger and noticeably reflects several times within our field of view, thus the819
configuration is dense with opportunities for third-order interactions in the right half of the820
image. One such interaction is the broad addition to ω2 in the bottom-right corner, and there821
is a corresponding beam at ω1 in the top-right corner.822
Due to our choice here ofω2 = 1.5ω1, some frequencies are duplicated by multiple modes.823

In particular, |ω2 − 2ω1 | = ω2 − ω1, but geometrically the wavevectors cannot organise to824
form a contribution from ω2 − 2ω1, consistent with the selection rules of Tabaei et al.825
(2005) and Jiang & Marcus (2009). In addition, a reflection of the second harmonic of826
beam 1 passes close to the interaction zone, and its interaction with beam 2 near the left827
vertex of the main interaction zone also produces two waves at ω2 − ω1, which propagate828
in each of the downward directions. Although the dominant components of 2ω1 and ω1829
have a common horizontal phase velocity and thus have a symmetry that prevents them830
from interacting (Dobra et al. 2021), each wave beam is monochromatic in frequency but831
has a broad wavenumber spectrum, so provided we satisfy the geometric selection rules,832
a full spectrum of resonant modes will still be generated. Moreover, 2ω1 has third-order833
interactions with ω1 and ω2, but the only appreciable contribution is 2ω1 + ω1 = 3ω1.834
One component of this signal is a weak evanescent second harmonic of beam 2, visible in835
the bottom-left corner, and appears here because 2ω2 = 3ω1 by construction. However, the836
dominant signal in the DMDmode at 3ω1 is a forced oscillation associated with beam 2, and837
we do not consider this mechanism in our model, so a direct comparison cannot easily be838
drawn.839
In numerous places, our experiment demonstrates the presence of yet higher-order840

interactions. Firstly, in the bottom-right corner of the ω2 − ω1 panel, there is a broadening841
of this wave beam that appears analogous to the previously noted third-order contributions842
to ω1 and ω2. This contribution may be generated by a fourth-order interaction between ω1843
and the ω2 − ω1 component that is itself generated by the second harmonic, 2ω1, and its844
fundamental, ω1. Secondly, the DMD at 2ω2 − ω1 exhibits waves originating in the main845
interaction zone. We do not predict them at third order, but do expect to find them at higher846
orders. Although our prediction of their amplitudes is poor, we do capture elements of847
their structure. We also note that in the top-right corner, we have successfully predicted the848
third-order interaction (ω2 − ω1) + ω2.849
In the following figures, we select some interesting alternative geometries. Figure 14850

considers the interaction of left- and right-running waves, and figure 15 considers incident851
waves from the same quadrant that interact obliquely.852
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Figure 13: Hierarchical decomposition of the internal wave field where ω1 ≈ 0.37N and
ω2 = 1.5ω1. We plot the real part of evolutionary modes of the

diagnostic,
(
1/ρ00

)
∂ρ′/∂z, and for reference mark the parallelogram where the incident

waves cross with dotted lines. Here, ω2 + ω1 < N , so new waves can be emitted. This
corresponds to the geometry presented in figure 10, and we see that these waves are

emitted in two directions. In this case, several frequencies are duplicated by contributions
from multiple sources; in particular, |ω2 − 2ω1 | = |ω2 − ω1 |. Other duplicates arise from
the second harmonic of beam 1, which first appears at second order and just misses the
main interaction zone. The final column compares with DMD, and the dashed grey boxes

indicate where experimental noise obscured the frequency from detection.

With waves in opposite horizontal directions, we have the opportunity to maximise the853
interaction strength by choice of frequencies. The source terms arise from the u ·∇ advection854
operators in the governing equations (2.1) and (2.3). The velocity, u, points along the wave855
beam,meanwhile all gradients are perpendicular to the beam. In the casewhere the two beams856
are orthogonal, u of one beam is aligned with the gradient vector of the other, and thus the857
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Figure 14: Decomposition of the internal wave field where ω1 ≈ 0.28N and ω2 = 3ω1.
We plot the real part of evolutionary modes of the diagnostic,

(
1/ρ00

)
∂ρ′/∂z, and for

reference mark the parallelogram where the incident waves cross with dotted lines. We
notice in particular distortion of phase lines of ω1 due to third-order contributions. For

completeness, we include the second harmonic of ω1, since this has the same frequency as
ω2 − ω1.

source terms will be maximal. In figure 14, we demonstrate a near-orthogonal configuration858
with the additional property that the dominant k2 − k1 is near-resonant.859
Due to these strong interactions at second order, we have a clear view of the third-order860

contributions to ω1. These broaden the beam significantly, introduce a distortion of the861
phase and slightly increase the amplitude. In addition, the second harmonic of beam 1 has862
frequency ω2 − ω1 and appears in the top-left corner, which interacts with its fundamental863
beam to produce third-order forced oscillations at ω1 whose wavevectors do not align with864
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Figure 15: Decomposition of the internal wave field where ω1 ≈ 0.54N and ω2 = 1.5ω1.
We plot the real part of evolutionary modes of the diagnostic,

(
1/ρ00

)
∂ρ′/∂z, and for

reference mark the parallelogram where the incident waves cross with dotted lines. We
observe that beams 1 and 2 exhibit broadening at third order.

those of beam 1. Of the remaining contributions to ω1, we distinguish between the following865
permutations: the standard pairings of−(ω2 − ω1)+ω2 and (ω2 + ω1)−ω2, and an additional866
possible interaction, (ω2 − ω1)−ω1, whose frequency coincideswithω1 in this configuration.867
It turns out that the additional interaction produces awave that propagates down and to the left,868
whereas the standard pairings produce waves that propagate in the same direction as beam 1869
and are responsible for broadening the beam.Given this clarity,we revisit theω1 andω2 panels870
in figures 12 and 13, and we note that the DMD shows clear distortion of ω2. Although we871
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underpredict the additionalω2 contribution, further numerical investigations have confirmed872
that this third-order contribution is primarily responsible for the observed distortion of phase.873
Other less significant factors are due to slight curvature of the stratification, which causes874
waves to refract.875
Returning to figure 14, at third order in ω2, a weak wave is emitted down and to the left,876

which we have determined from source terms must arise from the interaction (ω2 − ω1)+ω1.877
Furthermore, the ω2 − ω1 beam is broader than the main interaction zone in a manner878
analogous to the broadening of ω1, and we attribute this to higher-order contributions.879
It is of interest that the wavevector of the signal in the top-right of theω2−ω1 experimental880

image is not aligned with the direction given by the dispersion relation, so we conclude that881
these are forced oscillations. Since no other wave beams intersect beam 1 in this region,882
we deduce that these forced oscillations must be driven by the interaction of beam 1 with883
itself, but a single inviscid wave cannot self-interact because its gradients are strictly normal884
to its velocities. If a process, such as viscous spreading of the wave beam, were to cause885
the direction of some wavevectors to vary, triadic interactions would then be possible. We886
consider the sum of two modulated modes. Should the variations in direction be small,887
the wavevectors of the sources must point approximately in the direction of 2k1, and thus888
these wavevectors would be narrowly distributed about the resonant locus at the fundamental889
frequency,ω1, represented by a straight line through the origin. These wavevectors would not890
intersect the resonant locus of the second harmonic, which is also a straight line through the891
origin but has steeper gradient, and thus no propagating waves would be emitted at 2ω1. We892
hypothesise that such viscous mechanisms are responsible for these features, and in general,893
these are likely to be strongest close to the magic carpet. Indeed, in the 3ω1 DMD mode of894
figure 13, we notice the same feature and attribute viscous action to its appearance.895
Figure 15 shows an oblique interaction where the ω2 − ω1 beam is emitted back into896

the same quadrant from which the incident waves originate. Once again, the interactions897
are strong, and we successfully capture third-order beam-broadening contributions to both898
ω1 and ω2. Furthermore, we find shifts in phase to the left of the main interaction zone899
at both ω2 and ω2 − ω1, and a propagating beam down and to the right at ω2 − ω1. This900
frequency includes both second- and third-order effects because again ω2 = 1.5ω1. In the901
top-left of the DMD mode at this frequency, there is another weak wave that we attribute to902
a higher-order interaction. Finally, we remark that in this experiment, it turned out that there903
was a smooth, weak variation in buoyancy frequency from top to bottom.904

6. Conclusions905

We have developed a robust hierarchically organised prediction tool for arbitrarily complex906
two-dimensional internal wave systems and contend that this is a necessary and sufficient907
model for determining the structure of wave–wave interactions near the inviscid limit. In this908
work, we introduce for the first time the fusion of a weakly nonlinear perturbation expansion909
with a semi-analytical implementation of the monochromatic free-space Green’s function910
for the governing equation. Our method has indeed been shown to accurately recover the911
structure of wave–wave interactions, showing a remarkable level of agreement between our912
experiments and our method. Having carefully validated our approach using frequency-913
decomposed post-processing, we have now been able to identify wave–wave interactions914
up to third order by direct comparison and infer the origins of other features observed in915
experiments that must arise from higher orders or from secondary effects. This unparalleled916
access to individual components and isolation of interaction behaviour provides clarity to917
the mechanisms in the system, and we have attempted to explain with reference to the weakly918
nonlinear perturbation expansion previously unnoticed physical features, such as forced919
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oscillations that share a frequency with other waves but do not satisfy the dispersion relation920
for a wave to form. Furthermore, we have strong evidence of a previously undiscovered open921
question regarding the order-to-order transmission efficiency of wave–wave interactions.922
As necessitated by our choice of experimental validation, we have already generalised923

our approach to aperiodic configurations and arbitrary time dependence. With careful924
consideration of causality, we have also provided our calculations for a range of boundary925
conditions for two field potentials so that our free-space source implementation is suitable926
for bounded flows and, in particular, for our case that includes a flexible boundary. We have927
configured our implementation to be minimally elaborate while remaining causal.928
We remark that there is no particular restriction to systems of internal waves. Our929

hierarchical decomposition is equally valid for any system for which a Green’s function930
may be obtained. These include gravito-inertial systems, Rossby waves and some aspects931
of nonlinear acoustics. Further generalisations we envisage could include solving the linear932
inverse problem to determine suitable source strengths equivalent to a boundary displacement933
computed fromdata observed at a distance. Our experimental and numerical study has already934
led us to new insights on specific systems, and we anticipate the approach will be adopted935
for a much broader range of problems in the imminent future.936

Appendix A. Derivation of monochromatic Green’s function937

Repurposing the method of Hurley (1972, 1997), we first calculate the Green’s function for938
evanescent oscillations at ω > N , then analytically continue it to other values of ω. Defining939
the transformed coordinates to perform a dilatation,940

[
x
z

]
7→

[
xα
zα

]
=

[
x
Γ

z

]
, (A 1)941

the point-forced internal wave equation (3.3) becomes Poisson’s equation in the new942
coordinate system for ω > N ,943

∂2Gω

∂x2
α

+
∂2Gω

∂z2
α

= −
δ
(
xα −

x0
Γ

)
δ(zα − z0)

Γω2 . (A 2)944

Thus, Gω is proportional to the corresponding free-space Green’s function,945

Gω = C −
log

(
r2

)
4πω2Γ

, (A 3)946

where r2 = (x − x0)2/(1 − (N/ω)2) + (z − z0)2 and C is the integration constant, which is947
a gauge freedom that we take to be zero.948
We now extend Gω to be valid at all frequencies using analytic continuation in complex949

ω space. The logarithm has branch points at r2 = {0,∞}, which rearranges to950

1 −
(

N
ω

)2
=



−

(
x − x0

z − z0

)2
, 0



, (A 4)951

and thus the logarithm has four branch points,952

ω =



±

N√
1 +

(
x−x0
z−z0

)2
,±N



. (A 5)953

In addition, 1/Γ has three branch points, ω = {0,±N }, so, in total, there are five distinct954
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Figure 16: Branch points, shown with crosses, and branch cuts, shown with wiggly lines,
for analytic continuation in ω. The five branch points are all on the real axis and the

branch cut must be in the lower half plane to satisfy causality.

branch points, as marked in figure 16. Those at ω = ±N correspond to the regime change955
from evanescent to propagting internal waves. The branch points all need joining with branch956
cuts, which we chose carefully to provide physically realisable conditions. Since any steady-957
state internal wave must have grown from a stationary ambient at some time in the past,958
we assume that the wave is in fact growing exponentially slowly in time and so Im{ω} > 0959
(Lighthill 1960). Thus, we deform all the branch cuts to below the real line; these are shown960
by the wiggly lines in the figure.961
To perform the analytic continuation, we consider the complex arguments of the square962

root in Γ and of the logarithm. For complex ω = ωr + iε with real part ωr and a small963
imaginary part ε , we make the expansion964

1
Γ2 =

1

1 −
(

N
ωr+iε

)2 =
ω2
r

(
ω2
r − N2

)
+

(
2ω2

r + N2
)
ε2 + ε4 − 2iN2ωr ε(

ω2
r − N2 − ε2

)2
+ 4ω2

r ε2
. (A 6)965

The denominator is always positive and ε > 0, so sgn (Im{1/Γ2}) = − sgn (Re{ω}).966
When ω > N and is real, the complex argument, arg (r2) = 0. On proceeding around the967

first branch point at ω = N , where r2 becomes infinite, Im{1/Γ2} < 0, so Im{r2} < 0. Thus,968
arg (r2) decreases to become −π for N (1 + ((x − x0)/(z − z0))2)−1/2 < ω < N ; in other969
words, r2 increases from −∞ to zero between these branch points. As ω decreases further,970
the term (x − x0)2/(1− (N/ω)2) becomes less significant, such that r2 becomes positive real971
again after the next branch point, N (1 + ((x − x0)/(z − z0))2)−1/2, with its argument yet to972
be determined. Since Re{ω} > 0, we have Im{1/Γ2} < 0 and hence Im{r2} < 0, so arg (r2)973
increases around the branch point to become zero for −N (1 + ((x − x0) / (z − z0))2)−1/2 <974
ω < N (1 + ((x − x0) / (z − z0))2)−1/2. The frequency, ω, is now negative for the remaining975
two branch points of the logarithm, so the analytic continuation is in the upper half ω plane.976
Therefore, arg (r2) = +π for −N < ω < −N (1 + ((x − x0) / (z − z0))2)−1/2 and zero for977
ω < −N . Thus, Re{r2} exhibits even symmetry about ω = 0 but arg (r2) has odd symmetry.978
The value of the logarithm can now be determined using the standard formula,979

log
(
r2

)
= log ���r

2��� + i arg
(
r2

)
. (A 7)980

Next, we consider the three branch points of 1/Γ. For ω > N , its complex argument is981
zero. Proceeding round the first branch point, at ω = N , arg (1/Γ2) decreases to −π, so982
arg (1/Γ) = −π/2 and 1/Γ = −i((N/ω)2 − 1)−1/2 for 0 < ω < N . The second branch983
point is at ω = 0. When ε > 0, Im{1/Γ2} = 0 only when Re{ω} = 0. At this point,984
Re{1/Γ2} = ε2/(N2 + ε2) > 0, despite being negative when ω is significantly away from985
zero. Thus, the analytic continuation path in complex 1/Γ2 space goes anticlockwise around986
the branch point, as shown in figure 17. So, arg (1/Γ2) = +π for −N < ω < 0, thus 1/Γ987



36 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel

Re
{

1
Γ2

}
Im

{
1
Γ2

}

Figure 17: Analytic continuation path of 1/Γ2 for decreasing ω around 0. In order to
satisfy causality, Im{ω} > 0, so the path shown is obtained by deforming ω into the upper
half plane. The quantity 1/Γ2 is real and negative around ω = 0, but the argument of 1/Γ

changes from −π to +π.

changes sign at ω = 0. At the final branch point, ω = −N , Im{1/Γ2} > 0, so its argument988
decreases from +π to zero.989
The assembled Green’s function for each case is listed in table 3.990
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Table 3: Monochromatic Green’s function, including results of analytic continuation, for
all cases of ω. An integration constant can be added onto the Green’s function, but this
does not affect derived quantities such as the velocity, so without loss of generality we

take it to be zero.
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