14 research outputs found

    Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study.

    Get PDF
    Objectives To report the distribution of intraocular pressure (IOP) by age and sex and the prevalence of glaucoma.Design Community based cross sectional observational study.Setting EPIC-Norfolk cohort in Norwich and the surrounding rural and urban areas.Participants 8623 participants aged 48-92 recruited from the community who underwent ocular examination to identify glaucoma.Main outcome measures Prevalence and characteristics of glaucoma, distribution of IOP, and the sensitivity and specificity of IOP for case finding for glaucoma.Results The mean IOP in 8401 participants was 16.3 mm Hg (95% confidence interval 16.2 mm Hg to 16.3 mm Hg; SD 3.6 mm Hg). In 363 participants (4%), glaucoma was present in either eye; 314 (87%) had primary open angle glaucoma. In the remaining participants, glaucoma was suspected in 607 (7%), and 863 (10.0%) had ocular hypertension. Two thirds (242) of those with glaucoma had previously already received the diagnosis. In 76% of patients with newly diagnosed primary open angle glaucoma (83/107), the mean IOP was under the threshold for ocular hypertension (21 mm Hg). No one IOP threshold provided adequately high sensitivity and specificity for diagnosis of glaucoma.Conclusions In this British community, cases of glaucoma, suspected glaucoma, and ocular hypertension represent a large number of potential referrals to the hospital eye service. The use of IOP for detection of those with glaucoma is inaccurate and probably not viable

    Postfire Drill-Seeding of Great Basin Plants: Effects of Contrasting Drills on Seeded and Nonseeded Species

    No full text
    Objectives of postfire seeding in the Great Basin include reestablishment of perennial cover, suppression of exotic annual weeds, and restoration of diverse plant communities. Nonconventional seeding techniques may be required when seeding mixes of grasses, forbs, and shrubs containing seeds of different sizes. We conducted an operational-scale experiment to test the effectiveness of two rangeland drills (conventional and minimum-till) for seeding native plant mixes following wildfire in Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) communities. Both drills were configured to place small and large seeds in alternate rows. We hypothesized that the minimum-till drill's advanced featureswould improve establishment compared with the conventional drill. We also hypothesized that theminimum-till drill would cause less damage to residual perennials, whereas the conventional drill would have a greater impact on annual weeds. The experiment was replicated at three burned sites and monitored for 2 yr at each site. Seeded plant establishment was lowest at a low-precipitation site that became dominated by exotic annuals. Another site had high perennial grass establishment, which effectively suppressed exotic annuals, while a third site attained high diversity of seeded species and life forms but became invaded by exotic annuals in plant interspaces. Small-seeded species generally established better with the minimum-till drill equipped with imprinter wheels than the conventional drill with drag-chains. However, large-seeded species frequently established better with the conventional drill despite its lack of depth bands and press wheels. Soil disturbance associated with the conventional drill had a negative effect on residual perennials and exotic annuals at some sites. Results indicate that different drill features are advantageous in different ways, but that either of the tested drills, if properly used, can be effective for seeding native plant mixes provided site conditions are otherwise favorable for seedling establishment. © Published by Elsevier Inc. on behalf of The Society for Range Management.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond

    No full text
    A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability
    corecore