428 research outputs found

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter

    Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars

    Full text link
    The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitudinal differential rotation in the convection zones of 40 Sun-like stars using asteroseismology. For the most significant detections, the stars' equators rotate approximately twice as fast as their mid-latitudes. The latitudinal shear inferred from asteroseismology is much larger than predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc

    Sounding stellar cycles with Kepler - II. Ground-based observations

    Full text link
    We have monitored 20 Sun-like stars in the Kepler field-of-view for excess flux with the FIES spectrograph on the Nordic Optical Telescope since the launch of Kepler spacecraft in 2009. These 20 stars were selected based on their asteroseismic properties to sample the parameter space (effective temperature, surface gravity, activity level etc.) around the Sun. Though the ultimate goal is to improve stellar dynamo models, we focus the present paper on the combination of space-based and ground-based observations can be used to test the age-rotation-activity relations. In this paper we describe the considerations behind the selection of these 20 Sun-like stars and present an initial asteroseismic analysis, which includes stellar age estimates. We also describe the observations from the Nordic Optical Telescope and present mean values of measured excess fluxes. These measurements are combined with estimates of the rotation periods obtained from a simple analysis of the modulation in photometric observations from Kepler caused by starspots, and asteroseismic determinations of stellar ages, to test relations between between age, rotation and activity.Comment: Accepted for publication in MNRA

    Fate of CMY-2-encoding plasmids introduced into the human fecal microbiota by exogenous Escherichia coli

    Get PDF
    The gut is a hot spot for transfer of antibiotic resistance genes from ingested exogenous bacteria to the indigenous microbiota. The objective of this study was to determine the fate of two nearly identical blaCMY-2-harboring plasmids introduced into the human fecal microbiota by two Escherichia coli strains isolated from human and poultry meat, respectively. The chromosome and the CMY-2-encoding plasmid of both strains were labeled with distinct fluorescent markers (mCherry and GFP), allowing Fluorescence Activated Cell Sorting (FACS)-based tracking of the strain and the resident bacteria that have acquired its plasmid. Each strain was introduced into an established in vitro gut model (CoMiniGut) inoculated with individual feces from ten healthy volunteers. Fecal samples collected 2, 6 and 24 h after strain inoculation were analyzed by FACS and plate counts. Although the human strain survived better than the poultry meat strain, both strains transferred their plasmids to the fecal microbiota at concentrations as low as 102 CFU/mL. Strain survival and plasmid transfer varied significantly depending on inoculum concentration and individual fecal microbiota. Identification of transconjugants by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry revealed that the plasmids were predominantly acquired by Enterobacteriaceae such as E. coli and Hafnia alvei. Our experimental data demonstrate that exogenous E. coli of human or animal origin can readily transfer CMY-2-encoding IncI1 plasmids to the human fecal microbiota. Low amounts of exogenous strain are sufficient to ensure plasmid transfer if the strain is able to survive the gastric environment

    Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at sNN=200\sqrt{s_{NN}} = 200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p+pp+p collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.Comment: 19 pages, 11 figures and 6 table
    corecore