165 research outputs found

    Sea Level Rise fĂĽr the U.S. West Coast

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Bottom frictional stresses and longshore currents due to waves with large angles of incidence

    Get PDF
    The analytical forms of the time-averaged bottom shear stress are developed in this paper. The effects of the angle between the direction of wave propagation and the mean currents, and a large angle of wave incidence are included in the study. Two different friction models were obtained based on the relative magnitudes of wave orbital velocity and that of mean currents. These two friction models are applied to longshore currents generated by obliquely incident waves...

    Numerical simulation of long wave runup for breaking and nonbreaking waves

    Get PDF
    Tsunamis produce a wealth of quantitative data that can be used to improve tsunami hazard awareness and to increase the preparedness of the population at risk. These data also allow for a performance evaluation of the coastal infrastructure and observations of sediment transport, erosion, and deposition. The interaction of the tsunami with coastal infrastructures and with the movable sediment bed is a three-dimensional process. Therefore, for runup and inundation prediction, three-dimensional numerical models must be employed. In this study, we have employed Smoothed Particle Hydrodynamics (SPH) to simulate tsunami runup on idealized geometries for the validation and exploration of three-dimensional flow structures in tsunamis. We make use of the canonical experiments for long-wave runup for breaking and nonbreaking waves. The results of our study prove that SPH is able to reproduce the runup of long waves for different initial and geometric conditions. We have also investigated the applicability and the effectiveness of different viscous terms that are available in the SPH literature. Additionally, a new breaking criterion based on numerical experiments is introduced, and its similarities and differences with existing criteria are discussed

    Updating Maryland\u27s Sea-level Rise Projections

    Get PDF
    With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, The Free State is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the rate of rise of the average level of tidal waters with respect to land, or relative sea-level rise, has increased, at least partially as a result of global warming. Moreover, the scientific evidence is compelling that Earth’s climate will continue to warm and its oceans will rise even more rapidly. Recognizing the scientific consensus around global climate change, the contribution of human activities to it, and the vulnerability of Maryland’s people, property, public investments, and natural resources, Governor Martin O’Malley established the Maryland Commission on Climate Change on April 20, 2007. The Commission produced a Plan of Action1 that included a comprehensive climate change impact assessment, a greenhouse gas reduction strategy, and strategies for reducing Maryland’s vulnerability to climate change. The Plan has led to landmark legislation to reduce the state’s greenhouse gas emissions and a variety of state policies designed to reduce energy consumption and promote adaptation to climate change
    • …
    corecore