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Abstract—Breaking water waves at the shoreline create a wide
range of turbulent structures in the water column. Plunging
waves are particularly interesting as the plunging tip of the wave
impacts into the toe of the wave, often creating a tube or barrel
of air that surfers enjoy. As a result, the turbulence left after
the passage of the wave consists, in part, of coherent horseshoe
(hairpin) vortices that sink deeper into the water column with
time. Nadaoka et al. (1989) identified the legs of the horseshoe
(hairpin) vortices as obliquely descending eddies; here we show
they are just part of the horseshoes (hairpins). We also provide an
argument for the creation of these hairpin vortices (Farahani et
al., 2014b), based on an analogy with turbulent boundary layers.

I. INTRODUCTION

Water wave breaking at the shoreline produces turbulence,

which can play an important role in the sediment transport,

wave damping, and safety of vessels and structures located in

the surf zone (Banner and Peregrine, 1993). Not only do waves

periodically breaking on a beach give rise to these coherent

vortical structures, but a solitary wave does as well. One of

the important differences with a solitary wave (which is a first

order approximation of a tsunami) is that here there is no pre-

existing turbulence in the water column prior to the arrival of

the wave as is the case for waves on beaches. Therefore, we

can study three-dimensional vortex structures separately from

the effect of returning undertow and the residual turbulence

induced from the previously broken waves in the case of

periodic waves.

Breaking water waves including solitary waves have been

previously modeled using Smoothed Particle Hydrodynamics

(SPH) method by several researchers such as Monaghan

and Kos (1999); Monaghan and Kos (2000); Dalrymple et

al. (2002); Colagrossi and Landrini (2003); and Dalrymple

and Rogers (2006). In this study, we use three-dimensional

Smoothed SPH method to model broken solitary waves as well

as to investigate the induced three-dimensional vortex struc-

tures and turbulent fields. Two different solitary wave types

(spilling wave and plunging wave) are studied and coherent

vortex structures associated with each type are investigated.

Our computations are carried out with the GPUSPH model

(Hérault et al. 2010), which uses massively parallel Nvidia

graphics cards.

II. GOVERNING EQUATIONS AND GPUSPH MODEL

The governing equations to model the water wave motion

consist of the conservation of mass and the conservation of

momentum as:

∂ρ

∂t
+ ρ(∇.~u) = 0 (1)

D~v

Dt
= −

1

ρ
∇P + ~g + ~Θ (2)

where ρ is density; t is time; ~u is velocity; P is the pressure;

~g is the gravitational acceleration; and ~Θ is the viscous term.

The conservation of mass equation can be written in SPH form

as:

∂ρa
∂t

=
∑

b

mb(~ua − ~ub)∇aW (rab) (3)

where a denotes the particle of interest; b denotes the neighbor-

ing particle; m is the particle mass; W is the kernel function;

and rab is the distance between particle a and particle b.
The first term of the right hand side of the momentum

equation (2) is the pressure gradient term that can be written

in the SPH form as:

−
∑

b

(
Pa

ρ2
a

+
Pb

ρ2
b

)mb∇aW (rab) (4)

The second term on the right hand side of the momentum

equation is the gravitational acceleration, which is defined

as: ~g = (0, 0, 9.81)m
s2

. The third term on the right hand

side of the momentum equation is the viscous term that can

be computed using several methods. In this study we have

used the SPS approach of Dalrymple and Rogers (2006) with

constant Smagorinsky coefficient. In the SPS approach, the

effect of turbulence is considered in the SPH method using a

model similar to the Sub-Grid Scale (SGS) turbulence model

in the Large Eddy Simulation (LES) method (Dalrymple and

Rogers, 2006).



9th international SPHERIC workshop Paris, France, June, 03-05 2014

GPUSPH model is an open source package (http :
//www.ce.jhu.edu/dalrymple/GPUSPH/Home.html)
that was introduced by Hérault et al. (2010). GPUSPH

model performs real-time parallel SPH computations on

Graphics Processing Units (GPUs) of computers. GPUSPH is

written in an object-oriented platform and consists of several

interacting objects. In an Object-Oriented Program (OOP),

a set of objects interacts with each other, as opposed to the

non-OOP models, in which a program consists of a set of

subroutines each performing a particular task. Therefore, the

object-oriented programs are easier to maintain, modify, and

expand. A couple of additional features are added to the

existing package to perform wave-related numerical modeling

(Farahani et al., 2014a). These features include finding fluid

parameters at Eulerian nodes as well as Lagrangian particles,

which leads to a better comparison between numerical SPH

results and Eulerian experimental results. The second feature

is a procedure for the detection of the particles that form

the free surface. GPUSPH is written in the Compute Unified

Device Architecture (CUDA) language that is designed

for general-purpose computations on Nvidia GPUs. The

CUDA language is an extension to the standard programming

languages such as C, C++, and FORTRAN (www.nvidia.com).

III. SPH MODELING OF BROKEN SOLITARY WAVES AND

THE THREE-DIMENSIONAL HORSESHOE VORTEX

STRUCTURES

Coherent vortex structures have been studied in the lab-

oratory by Nadaoka et al. (1989). Two-dimensional span-

wise vortex structures were found under breaking waves

with axes parallel to the crest line. Behind the wave crest,

three-dimensional structures were observed that were called

obliquely descending eddies. These experiments revealed that

the vortex structures induced by breaking waves carry large

amounts of vorticity into otherwise almost irrotational velocity

fields. Ting and Kirby (1994, 1995, 1996) carried out a series

of experiments regarding the plunging and spilling breakers

and related turbulence . The experiments revealed that the

vortex structures carry turbulent kinetic energy. In the case

of a plunging breaker, they reported that the kinetic energy is

transported landward and dissipated within one wave cycle. In

the case of a spilling breaker, the turbulent kinetic energy is

transported seaward and the dissipation rate is much slower.

An experimental study of a broken solitary wave and cor-

responding turbulence was performed by Ting (2006). In this

study, another type of coherent structures, called downbursts,

were detected as well as the obliquely descending eddies.

In terms of numerical studies, Lin and Liu (1998) carried out

a two dimensional RANS numerical model to study the wave

breaking in the surf zone. They reported that the turbulence

generation is started from a ‘roller’ region in front of the

broken wave. Watanabe et al. (1999) used a three-dimensional

large-eddy simulation (LES) method to study the turbulent

vortices under spilling and plunging breakers. Christensen and

Deigaard (2001) and Christensen (2006) performed a LES

Fig. 1. Schematic plot of experimental set-up (Ting, 2006)

method to model spilling and plunging breakers. They found

the same order of magnitude of the turbulent energy as the

previous experimental results.

SPH method has been previously proven to be capable

of modeling broken water waves. In this section, we show

that SPH method is also capable of capturing the turbulence

induced from the broken waves and the corresponding co-

herent vortices. For this purpose, the laboratory-scale solitary

breaking wave of Ting (2006) is chosen to be numerically

modeled by the SPH method.

A. Wave tank set-up

The wave tank set-up used in the numerical model was

inspired by the experimental study of Ting (2006). The wave

tank is 25 m long, 0.9 m wide and the bottom plane has a

slope of 1 in 50. The still water depth is equal to 0.3 m and a

piston type wave generator produces a spilling solitary wave

with a wave height of 0.22 m. Figure 1 illustrates a schematic

plot of the experimental set-up (Ting, 2006).

B. SPH modeling of the solitary wave

GPUSPH model is used to carry out the numerical simula-

tion with initial particle spacing of particles equal to 0.007 m

and about seven million particles are used in this simulation.

The Wendland kernel function (1995) is used for the SPH

interpolation. A zeroth-order Shepard filter (Shepard, 1968) is

implemented to reinitialized the density once every 30 time

steps.

The piston wave generator is presented as a moving bound-

ary in the numerical model and the solitary wave is generated

using the Goring and Raichlen (1980) approach. The solitary

wave is generated using the following equation (Goring and

Raichlen, 1980):

ζ(t)

S
=

1

2
{1+tanh 2[(3.8+

H

h
)(
t

τ
−

1

2
)−

H

h
(
ζ

S
−

1

2
)]} (5)

where ζ is the wave generator displacement; S is the stroke;

H is the wave height; h is the water depth; t is time; and τ is

duration of wave generator motion.The solitary wave genera-

tion trajectory in our problem is computed using equation 5

and presented in the figure 2. Here, the wave height is equal

to 0.22 m and the water depth is equal to 0.3 m.
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(a) Time = 3.5s, 3.7s, 3.9s, 4.1s, 4.3s, (b) Time = 4.5s, 4.7s, 4.9s, 5.1s, 5.3s.

Fig. 4. Vortex evolution after the broken wave. The flow field is observed from above in a wave-following frame of reference at different times (top to
bottom in each column).The vortex structures are detected by the isosurface of λ2 = −50.

where u′, v′, w′ are turbulence velocity components in x,y,

and z direction. The six components of turbulence stresses are

found as: u′2, v′2, w′2, u′v′, u′w′,v′w′.

Figure 6 presents the vortex structures behind the broken

wave at time = 4.7 s. This picture also presents streamwise

vorticity profile (ωx), turbulent velocity vectors (v′, w′), tur-

bulent momentum flux (−u′w′), and turbulent kinetic energy.

Turbulent velocity vectors and streamwise vorticity show two

counter-rotating rotations associated with the two legs of

a reversed horseshoe structure. A high value of turbulent

momentum flux and turbulent kinetic energy are observed at

the location of the reversed horseshoe structure.

The reversed horseshoe structures shown in figure 6 is

chased over time and is presented in figure 7. This figure

shows the variation of turbulent velocities vectors (v′, ’w′)

and the turbulent momentum flux (−u′w′) over time. As

the time passes, the reversed horseshoe structure illustrates a

downwelling motion and transfer turbulent momentum flux to

deeper layers of the water column. The results are consistent

with Kim and Moin (1986) and Yang and Shen(2009) results

who have also studied the coherent structures but in other

problems. As the horseshoe travels downward, the intensity of

the turbulent momentum flux decreases due to the spreading

and dissipation.

E. Vortex structures under a broken plunging solitary wave

In the previous sections, vortex structures under a spilling

water wave have been studied. In this section a plunging

solitary wave and the corresponding vortex structures will

be studied. Different types of waves can be categorized as

follows:

ζ0 =
tanβ
√

H0

L0

(8)

where β is the beach slope, H0 is the wave height, L0 is the

wave length, and ζ0 is a criterion to show the breaker type.

A wave is a spilling breaker if ζ0 < 0.5, a plunging breaker

if 0.5 < ζ0 < 3.3, and a surging beaker if ζ0 > 3.3. In the

previous sections, in case of the spilling breaker ζ0 was equal

to 0.099. In the following section a plunging wave with the

ζ0 equal to 0.55 will be numerically modeled.

The same wave tank set-up is used only the beach slope

is changed from 1 in 50 to 1 in 9. The wave height is equal

to 0.22 m and the water depth close to the wave generator is

equal to 0.3 m. Figure 8 shows the plunging solitary wave

breaking at the beach and the corresponding run-up. The

vortex structures are generated under the broken wave and

are carried towards the shore by the run-up but no reversed

horseshoe structure is observed at the back of the broken wave
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Fig. 7. Turbulent momentum flux (−u′w′) and turbulent velocity vectors (v′, w′) at time = 4.7, 5.1, 5.5 s
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Fig. 5. Schematic illustration of a horseshoe (hairpin) vortex evolution in
a turbulent flow. Top: Wave breaking problem in a wave-following frame
of reference (reversed horseshoe structure), Bottom: Boundary layer problem
(horseshoe structure) (a): vertical velocity profile in a wave-following frame
of reference of a wave breaking problem and the generation of a reversed
horseshoe structure (b): a reversed horseshoe structure in a wave breaking
problem (c): vertical velocity profile in a boundary layer problem and the
generation of a horseshoe structure (d): a horseshoe structure in a boundary
layer problem

in this case. The horizontal rollers that are generated under

the broken wave hit the bottom by the plunging breaker and

no reversed horseshoe structure is generated. The numerical

results are consistent with the experimental results of Ting

and Kirby (1994, 1995, 1996).

IV. CONCLUSION

The three-dimensional GPUSPH numerical is used to model

the generation, propagation, and breaking of a spilling solitary

wave and a plunging solitary wave. SPH method is capable

of modeling the broken solitary wave as well as the turbulent

vortices generated under a broken wave. Two types of coherent

vortex structures are observed under a broken wave: First is

the spanwise two-dimensional rollers that are generated at

the locations where the wave overturns and hits the surface

ahead; Second is the three-dimensional reversed horseshoe

structures that are initiated from the spanwise rollers and

have a obliquely descending motion. These reversed horseshoe

structures carry turbulent kinetic energy and momentum flux

downward and can have a crucial role in the sediment trans-

portation. Two legs of the reversed horseshoe structures have a

counter-rotating rotations and high values of turbulent kinetic

energy and Reynolds stresses were observed at the regions

between the two counter-rotating legs and at the outer corner

of them.
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Using a Lagrangian particle method for deck overtopping, Proc. of
Waves, ASCE., 1082-1091, 2002.

[5] R. A. Dalrymple and B. D. Rogers, Numerical modeling of water waves

with SPH method, Coastal Engineering, 53, 141-147, 2006.
[6] R. J. Farahani, R. A. Dalrymple, A. Hérault, G. Bilotta,Three-
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Fig. 8. Plunging solitary wave breaking and vortex structures detected by the isosurfaces of λ2 = −50. Top: time = 3.1 s, Bottom: time = 3.3 s


