267 research outputs found

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    Precinct straddling of city boundaries

    Get PDF
    Journal ArticleSuppose a situation in which citizens of a particular city vote in county, state and national elections, but in which their combined vote for each candidate is not clearly separable from the votes of residents of adjacent areas outside of the city. It can be argued that the inability to identify the city vote would have undesirable implications for the visibility of the political preferences of the people of the city, for the reliability and indeed validity of the process of administering city elections and for the accessibility of the city to analysis of its political history

    Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature

    Full text link
    Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a axis, thus preserving the overall helical structure.Comment: 10 pages, 4 figure

    The magnetoelectrochemical switch

    Get PDF
    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits

    2D Kagome Ordering in the 3D Frustrated Spinel Li2Mn2O4

    Full text link
    muSR experiments on the geometrically frustrated spinel oxide, Li2Mn2O4, show the development of spin correlations over a range of length scales with decreasing temperature. Increased relaxation below 150 K is consistent with the onset of spin correlations. Below 50 K, spin order on a length scale, which is long range for the muSR probe, appears abruptly in temperature, consistent with prior neutron diffraction results. The oscillations in the zero field asymmetry are analyzed using a three frequency model. By locating the muon site this is shown to be consistent with the unexpected 2D q = root 3 x root 3 structure on the Kagome planes proposed originally from neutron data. Longitudinal field data demonstrate that some spin dynamics persist even at 2 K. Thus, a very complex magnetic ground state, featuring the co-existence of long length scale 2D ordering and significant spin dynamics, is proposed. This is unusual considering the 3D topology of the Mn3+ spins in this material.Comment: 9 pages, 9 figures, to be submitted to J. Phys. Cond. Mat

    Muon spin rotation and relaxation in magnetic materials

    Full text link
    A review of the muon spin rotation and relaxation (μ\muSR) studies on magnetic materials published from July 1993 is presented. It covers the investigation of magnetic phase diagrams, of spin dynamics and the analysis of the magnetic properties of superconductors. We have chosen to focus on selected experimental works in these different topics. In addition, a list of published works is provided.Comment: Review article, 59 pages, LaTeX with IoP macro

    Understanding the μ\muSR spectra of MnSi without magnetic polarons

    Get PDF
    Transverse-field muon-spin rotation (μ\muSR) experiments were performed on a single crystal sample of the non-centrosymmetric system MnSi. The observed angular dependence of the muon precession frequencies matches perfectly the one of the Mn-dipolar fields acting on the muons stopping at a 4a position of the crystallographic structure. The data provide a precise determination of the magnetic dipolar tensor. In addition, we have calculated the shape of the field distribution expected below the magnetic transition temperature TCT_C at the 4a muon-site when no external magnetic field is applied. We show that this field distribution is consistent with the one reported by zero-field μ\muSR studies. Finally, we present ab initio calculations based on the density-functional theory which confirm the position of the muon stopping site inferred from transverse-field μ\muSR. In view of the presented evidence we conclude that the μ\muSR response of MnSi can be perfectly and fully understood without invoking a hypothetical magnetic polaron state.Comment: 10 pages, 12 figure

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure
    corecore