37 research outputs found
Fragmentation and Limits to Dynamical Scaling in Viscous Coarsening: An Interrupted in situ X-Ray Tomographic Study
X-Ray microtomography was used to follow the coarsening of the structure of a
ternary silicate glass experiencing phase separation in the liquid state. The
volumes, surfaces, mean and Gaussian curvatures of the domains of minority
phase were measured after reconstruction of the 3D images and segmentation. A
linear growth law of the characteristic length scale was
observed. A detailed morphological study was performed. While dynamical scaling
holds for most of the geometrical observables under study, a progressive
departure from scaling invariance of the distributions of local curvatures was
evidenced. The latter results from a gradual fragmentation of the structure in
the less viscous phase that also leads to a power-law size distribution of
isolated domains
Observation directe et analyse de la morphologie d'un front de fracture piégé dans une interface hétérogène
Nous avons étudié le piégeage d’une fissure
par une interface hétérogène lors d’un test de clivage. Pour différentes structurations
macroscopiques simples, nous montrons que la morphologie du front de fissure peut être
décrite par une approche perturbative du premier ordre. Cette description nous a permis
de déterminer les ténacités locales dans les zones de piégeage ainsi que le taux de
renforcement de l’interface. Ainsi, on obtient une mesure locale d'adhésion entre deux
couches structurées
Failure of brittle heterogeneous materials: intermittency, crackling, and seismicity
The problem of the solid fracture is classically addressed within the framework of continuum mechanics. Still, stress enhancement at crack tips makes the failure behavior observed at the continuum-level scale extremely dependent on the presence of microstructural inhomogeneities. This yields statistical aspects which, by essence, cannot be addressed using the conventional engineering continuum approaches. We designed an experimental setup that allows growing well-controlled tensile cracks in brittle heterogeneous solids of tunable microstructure, over a wide range of loading speed. The crack dynamics and the evolution of stored and released mechanical energy are monitored in real time. In parallel, the acoustic emission is recorded via a series of acoustic transducers and analyzed in a way similar to that develop by geophysicists to process seismic signals. These experiments allowed us to characterize quantitatively the crackling dynamics of cracks, also to evidence intriguing statistical similarities between the seismicity associated with this simple situation (single crack under tension) and the much more complex situation of multicracking in compressive fracture and in earthquakes
Self-replicating cracks: a collaborative fracture mode in thin films
Straight cracks are observed in thin coatings under residual tensile stress,
resulting into the classical network pattern observed in china crockery, old
paintings or dry mud. Here, we present a novel fracture mechanism where
delamination and propagation occur simultaneously, leading to the spontaneous
self-replication of an initial template. Surprisingly, this mechanism is active
below the standard critical tensile load for channel cracks and selects a
robust interaction length scale on the order of 30 times the film thickness.
Depending on triggering mechanisms, crescent alleys, spirals or long bands are
generated over a wide range of experimental parameters. We describe with a
simple physical model the selection of the fracture path and provide a
configuration diagram displaying the different failure modes
Fluctuations of global energy release and crackling in nominally brittle heterogeneous fracture
The temporal evolution of mechanical energy and spatially-averaged crack
speed are both monitored in slowly fracturing artificial rocks. Both signals
display an irregular burst-like dynamics, with power-law distributed
fluctuations spanning a broad range of scales. Yet, the elastic power released
at each time step is proportional to the global velocity all along the process,
which enables defining a material-constant fracture energy. We characterize the
intermittent dynamics by computing the burst statistics. This latter displays
the scale-free features signature of crackling dynamics, in qualitative but not
quantitative agreement with the depinning interface models derived for fracture
problems. The possible sources of discrepancies are pointed out and discussed
Damage mechanisms in the dynamic fracture of nominally brittle polymers
Linear Elastic Fracture Mechanics (LEFM) provides a consistent framework to
evaluate quantitatively the energy flux released to the tip of a growing crack.
Still, the way in which the crack selects its velocity in response to this
energy flux remains far from completely understood. To uncover the underlying
mechanisms, we experimentally studied damage and dissipation processes that
develop during the dynamic failure of polymethylmethacrylate (PMMA),
classically considered as the archetype of brittle amorphous materials. We
evidenced a well-defined critical velocity along which failure switches from
nominally-brittle to quasi-brittle, where crack propagation goes hand in hand
with the nucleation and growth of microcracks. Via post-mortem analysis of the
fracture surfaces, we were able to reconstruct the complete spatiotemporal
microcracking dynamics with micrometer/nanosecond resolution. We demonstrated
that the true local propagation speed of individual crack fronts is limited to
a fairly low value, which can be much smaller than the apparent speed measured
at the continuum-level scale. By coalescing with the main front, microcracks
boost the macroscale velocity through an acceleration factor of geometrical
origin. We discuss the key role of damage-related internal variables in the
selection of macroscale fracture dynamics.Comment: 18 pages, 21 figures, to appear in International Journal of Fractur
Nanoscale damage during fracture in silica glass
We report here atomic force microscopy experiments designed to uncover the
nature of failure mechanisms occuring within the process zone at the tip of a
crack propagating into a silica glass specimen under stress corrosion. The
crack propagates through the growth and coalescence of nanoscale damage spots.
This cavitation process is shown to be the key mechanism responsible for damage
spreading within the process zone. The possible origin of the nucleation of
cavities, as well as the implications on the selection of both the cavity size
at coalescence and the process zone extension are finally discussed.Comment: 12 page
Crack propagation through phase separated glasses: effect of the characteristic size of disorder
We perform fracture experiments on nanoscale phase separated glasses and
measure crack surface roughness by atomic force microscopy. The ability of
tuning the phase domain size by thermal treatment allows us to test thoroughly
the predictions of crack font depinning models about the scaling properties of
crack surface roughness. It appears that in the range of validity of these
depinning models developed for the fracture of brittle materials, our
experimental results show a quantitative agreement with theoretical
predictions: beyond the characteristic size of disorder, the roughness of crack
surfaces obeys the logarithmic scaling early predicted by Ramanathan, Ertas and
Fisher (PRL97
Propagation de fissure et transition de dépiégeage : Effet du désordre microscopique
Nous avons réalisés des mesures d'exposant
de rugosité sur des faciès de rupture de verres de borosilicates démixés dans lesquels
nous avons fait varier la taille caractéristique du désordre (i.e. taille des domaines
de démixtion). Nous avons ainsi pu discuter le domaine de validité des prédictions de la
théorie du piégeage. Au-delà de la discussion sur l'exposant de rugosité, nous montrons
qu'il présente une transition critique liée à la taille de la structuration à l'échelle
microscopique
Piégeage d'une fissure interfaciale par structuration d'un empilement multicouche magnétron
Pour renforcer l'interface faible d'un empilement multicouches, on peut utiliser un mécanisme de piégeage en modifiant localement la ténacité de cette interface. Ce renforcement est la conséquence de l'existence d'un régime de piégeage dû à un changement local de ténacité. Dans cette étude, nous avons étudié le piégeage d'une fissure lors d'un test de clivage pour des défauts macroscopiques simples. Les défauts ont été obtenus par rayage superficiel de façon à supprimer localement l'interface faible de l'empilement. Ainsi, lors de l'assemblage de l'éprouvette de clivage, on génère localement des zones de forte adhésion dans le sillon des rayures. Pour différents types de défauts, nous avons montré que la morphologie du front de fissure pouvait être décrite par une approche perturbative du premier ordre initialement développée par Gao et Rice. Cette description nous a aussi permis de déterminer les ténacités locales dans les zones de piégeage