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We perform fracture experiments on nanoscale phase separated glasses and measure crack surface
roughness by atomic force microscopy. The ability of tuning the phase domain size by thermal
treatment allows us to test thoroughly the predictions of crack font depinning models about the
scaling properties of crack surface roughness. It appears that in the range of validity of these
depinning models developed for the fracture of brittle materials, our experimental results show a
quantitative agreement with theoretical predictions: beyond the characteristic size of disorder, the
roughness of crack surfaces obeys the logarithmic scaling early predicted by Ramanathan, Ertas and
Fisher[1].

Ever since an early paper by Mandelbrot et al [2] about the fractal character of crack surfaces, a growing interest
has developed in the understanding of fracture of heterogeneous materials[3, 4, 5]. In particular many studies[2, 4,
6, 7, 8, 9, 10, 11, 12] have dealt with the statistical characterization of both crack front geometry and crack surface
roughness. It appears that, over a broad spectrum of length scales, these objects obey a self-affine symmetry: they
are left statistically invariant rescaling with different ratios depending on the direction. More specifically, self-affinity
implies that the typical height differences ∆h along the surface scales as ∆h ∝ ∆xζ when measured over a distance
∆x, ζ being a real parameter called the roughness, or Hurst, exponent. Early studies proposed that the roughness of
various fractured materials, independently of their ductile[6] or brittle[7] nature, could be described over a wide range
of scales with a unique value of the roughness exponent ζ ≃ 0.8.

This apparent universality motivated the development of models[1, 13] based on the depinning of an elastic line
through a random landscape[14] and the description of long range elastic interactions along a rough crack front[15, 16].
A crack surface can indeed be considered as the trace left by a crack front propagating through a disordered material[17]
(see Fig. 1a for a representation of crack front propagation). In such a description, a particular site pinned by a
microscopic tough zone may overcome the obstacle with the help of the additional elastic force due to the straining
of the structure around the obstacle. This competition between a roughening effect due to the quenched random
environment and a smoothing effect due to elastic interactions along the front leads to a rich phenomenology. When
the Stress Intensity Factor K remains below a certain threshold, K∗ the front can only propagate over a finite length
and then stops; above threshold, the front can move at a finite, but highly fluctuating, velocity. Moreover, this
transition appears to be critical, with a collection of critical exponents (among which the roughness exponent of the
elastic front) ruling its behavior close to threshold, with the strong property of universality coming naturally with
this observation.

These depinning models thus intend to characterize the associated critical transition and to capture the geometry
and the intermittent dynamics of the crack front. The case of interfacial plane cracks was first developed[13] to study
the in-plane roughness (i.e. in the direction of propagation) of the front in the propagation plane. The more complex
case of a 3D crack front was then discussed[1], allowing the study of the out-of-plane roughness (i.e. in the direction
normal to the mean plane of propagation) responsible for the fracture surface roughness.

Though qualitatively correct, the results appeared to be quantitatively rather disappointing since these models
predict only a logarithmic scaling of the crack surface’s out-of-plane roughness [1], i.e. the roughness exponent
predicted by the depinning model was ζdep = 0 (here and in the following the notation ζdep will refer to the exponents
predicted by the depinning models while the notation ζ will refer to experimental estimates) whereas the experimental
estimate was ζ ≃ 0.8. Even in the simpler case of plane crack propagation, the roughness exponent characterising
the in-plane roughness of the crack front was found to be significantly lower in models (ζdep

H ≃ 0.4) [18, 19] than in
experiments (ζH ≃ 0.55) [8].

We argue here within that the main reason for the apparent discrepancy between experimental results and scaling
predictions of depinning models stems from the dubious status in most experiments of a key hypothesis of the models:
a clear separation between the scale of disorder and the scale of measurement. To test this argument, we present results
of fracture experiments performed on a series of model heterogeneous brittle materials: phase separated glasses[20].
Thermal treatments of various durations allowed the fine tuning of phase domain sizes. Phase separated glasses
thus differ only by one single parameter, the lengthscale of their microstructure, with all other material properties
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Heat treatment duration 4h 16h 64h

Phase domain size d 28.2 ± 2.5 nm 56.3 ± 9.3 nm 92.2 ± 9.4nm

TABLE I: Size d of phase domains (estimated by the correlation length at half height) vs duration of thermal treatment at
650◦C. See Ref. [20] for quantitative details about the kinetics of phase separation on these glasses.

remaining identical. Such an experimental procedure thus allows us to study the dependence of the spatial extent of
the scaling regime on the characteristic size of the internal disorder.

Phase separated glasses have been prepared from an alkali borosilicate glass of composition (in weight): SiO2 70%,
B2O3 25%, Na2O 2.5% and K2O 2.5%. The raw materials were mixed together and melted at 1550◦C and the melt
was then refined over 2 hours in order to obtain a homogeneous glass; after quenching, the glass was annealed for
1h at 630◦C in order to relax the internal thermal stresses. At this stage, phase separation had already initiated,
attested to by the slightly opalescent character of the glass. The major phase is near-pure silica while the minor phase
concentrates other constituents. Heat treatments at 650◦C over increasing durations (4h, 16h, 64h) were then applied
to increase more and more the size of phase domains as shown in Fig. 2 and summarised in Table I. It was thus
possible to prepare glasses with controlled phase domain sizes, ranging from around 20 to 100 nm. Further details
concerning the preparation and the characterisation of the glass samples can be found in Ref. [20].

Stable dynamic fracture experiments on these heterogeneous materials were performed by using a DCDC set-up
(Double Cleavage Drilled Compression) (see Fig. 1-Left) and a statistical analysis of the fracture surface roughness
carried out from Atomic Force Microscopy (AFM) images (see Fig. 1-Center for the principle and Fig. 1-Right
for an AFM image of roughness masurements obtained on a fracture surface). From the above mentioned glass,
parallepipedic shaped samples (5mm×5mm×25mm) with a central hole 1mm in diameter have then been prepared.
Stable cracks were then propagated in these by using DCDC mechanical test. Roughness measurements, coming
from height images (TM-AFM) were then immediately performed in areas lying between two crack arrest lines. The
measurements are thus performed in the immediate vicinity of the propagation threshold: K ≈ K∗.

The surface morphology of all samples has been characterised by AFM height measurement in tapping mode (TM-
AFM), using a Nanoscope III A from Digital Instruments with Al coated tip (BudgetSensors - model BS-Tap 300 Al).
The Al coating thickness used was 30nm, the resonant frequency 300 kHz and the stiffness constant 40N/m. Images
were recorded at a scan frequency between 0.8 and 1Hz for a resolution of 512× 512 pixels. For each sample (i.e. for
each thermal treatment conditions), at least 3 AFM images were performed for 4 different scan areas ranging between
500 × 500 nm2 and 8 × 8 µm2.

Beyond its imaging ability, AFM has recently been used as a truly quantitative tool to study glass surfaces. It is,
for example, possible to obtain a quantitative validation of the description of fused glass surfaces by frozen capillary
waves[21] or of the kinetics of phase separation in glasses[20]. In both cases, not only are the expected scaling regimes
recovered but the prefactors of the scaling laws can also be extracted and shown to be consistent with the associated
physical parameters (diffusivity, interface tension). In the present case of fracture surfaces, it appears that one can
identify an apparent scaling regime up to the size of the heterogeneities (Fig. 3a). This result is consistent with
the standard analysis even if the scaling range is limited. More interestingly, beyond the size of heterogeneities, one
observes (Fig. 3b) a clear logarithmic scaling as predicted by the depinning model early proposed by Ramanathan et

al [1, 22].

More specifically Fig. 3 represents the evolution of height differences ∆h(∆x) =
(

〈[h(x + ∆x) − h(x)]2〉x
)1/2

measured on a scale ∆x on the crack surface of each of the three types of sample. The results could be collapsed
onto a master curve after rescaling by the phase domain size d along the x-axis and by the typical height difference
∆h(d) along the y−axis. When data are displayed on a log-log scale (Fig. 3a), an apparent power law behaviour of
exponent ζ = 0.8 is identified, extending over one decade up to the size of heterogeneity. Such a scaling law below

the size of heterogeneities, if genuine, could not be explained in the framework of depinning models which predict
scaling regimes only above the typical scale of disorder. However if data are now represented on a simple linear-log
scale, we obtain above the characteristic scale of the heterogeneities excellent agreement between our results and the
logarithmic scaling predicted by depinning models. Such a data collapse after rescaling by the characteristic size of
disorder ξ0 is fully consistent with a description of fracture propagation as a critical transition. In such models the
scaling regime is indeed expected to hold in the spatial range [ξ0, ξ] where ζ0 is the characteristic size of the toughness
disorder ξ ∝ ξ0|K

∗ −K|−ν is the correlation length, diverging as a power law of exponent ν when the stress intensity
factor K approaches the critical threshold K∗ (which is nothing here but the effective toughness of the material)
and is directly proportional to ξ0. Here, propagation is performed close to threshold and the scaling regime is thus
expected to be wide enough to be easily observed. Note that in case of a strongly overdriven crack, K ≫ K∗, dynamic
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instabilities set in and a roughness of entirely different nature is expected to appear. Depinning models thus seem to
give an excellent account of the scaling of the roughness of crack surfaces obtained from the quasistatic fracture of
brittle heterogeneous materials such as the phase separated glasses used in the present study.

The present results thus may contribute to clarify the current debate about fracture and universality. In view of
the persistent discrepancy between experimental measurements and model predictions, efforts have indeed been made
to either improve these depinning models[23, 24] or look for alternative scenarios for fracture propagation[11, 25].
Higher order terms were taken into account in the depinning model[23] but apparently did not change the scaling
behaviour[26]. High velocity propagation was discussed[24] as a possible mechanism to anneal the frozen toughness
noise in the equation describing the front propagation. The interplay between local damage and crack propagation
was proposed but led to controversy at both the theoretical[27, 28, 29, 30] and the experimental[31, 32] levels.

Moreover, in light of the variety of experimental results, the initial claim of universality itself may need to be
tempered. Beyond the variability of sacling exponents estimated experimentally, when measurements are performed
on materials with a well defined micro-structure such as glass[11], sintered glass beads[12] or some cast aluminium
alloys[10], it appears that either the scaling range is very limited or that it does not extend beyond the grain size
whereas a truly universal scaling regime should extend beyond the characteristic size of heterogeneities.

Within this context, the results of the present study suggest a simple scenario. When considering the stable
propagation of brittle heterogeneous samples, depinning models can account quantitatively for the scaling of crack
surface roughness beyond the scale of heterogenities. This means in particular that we need to clearly separate the
spatial scales within which the material can be considered as brittle (beyond the size of the “process zone” where
dissipative mechanism associated with crack propagation take place) from the range of scales within which damage
or ductility take place. Depinning models will not give any predictions below the size of the process zone. It will thus
be necessary to resort to alternative models (stress-weighted percolation[28], random fuse models[5]) to account for
fracture propagation in ductile heterogeneous materials.

Note again that in the present framework of fracture, the notion of disorder is rather subtle. The fluctuating quantity
to consider is actually the toughness of the material. However the toughness disorder is not a direct reflection of the
structural disorder but need be “convoluted” at the scale of the process zone. Two lengthscales have thus to be
considered, the size of the process zone and the characteristic size of the structural disorder. In the present case,
glasses being very brittle, the typical size of the proces zone does not overcome a few nanometers, below the size of
the phase domains and the characateristic scale of the toughness disorder can be safely identified with the size of the
structural disorder.

The common experimental observation of a wide scaling regime on fracture surfaces with roughness exponents
differing from the depinning predictions may therefore result from the non-respect of the hypothesis of depinning
models: scale separation between toughness disorder and experiments or perfect brittleness. This may be the case for
ductile materials for which the size of the process zone lies in the spatial range of roughness measurements or very
heterogeneous materials presenting heterogeneities over a wide range of scales. In particular the “classical” scaling
regime characterized by a roughness exponent ζ ≃ 0.8 may correspond to the existence of additional microscopic
mechanisms (e.g. damage or other non-linear behaviour) over a more limited range of scales. The present results also
suggest that experiments displaying a scaling regime only up to the characteristic size of disorder may be revisited to
test whether they exhibit the logaritmic scaling of roughness expected beyond that characteristic size.

This first quantitative validation of the depinning scenario to describe brittle crack propagation through heteroge-
neous materials thus provides a framework to extend the use of critical transitions concepts to fracture, for instance
in order to better predict fluctuations and homegeneous behaviour from nano- to macro-scale[33].
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[7] K. J. Måløy, A. Hansen, E. L. Hinrichsen, and S. Roux, Phys. Rev. Lett. 68, 213 (1992).
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FIG. 1: Experimental methods. Left: geometry of the DCDC mechanical test. Two longitudinal cracks propagate from
the cylindrical hole. Center: sketch of a propagating crack front pinned by heterogeneities (here figured as grey dots). The
front develops a roughness both in the out-of-plane direction, visible on the y − z plane projection and in the direction of
propagation, visible on the x − y plane projection. When scaling invariant, this roughness is characterized by an exponent ζ

in the out-of-plane direction and an exponent ζH in the direction of propagation. AFM measurements are performed on the
crack surface. Right: AFM image of a surface obtained after fracture of a glass sample annealed at 650◦C over 4h.

FIG. 2: AFM images obtained after acid etching on glass samples annealed at 650◦C over 4h, 16h and 64h

respectively. Under annealing, alkali borosilicate separate into a near pure silica phase and another phase concentrating all
other components. The latter phase can be eliminated by acid etching, the height contrast obtained on AFM images thus
reveals the phase contrast (see also Ref. [20]).
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FIG. 3: Roughness of fracture surfaces after rescaling by the phase domain size d along the x−axis and the

typical roughness ∆h(d) at size d along the y−axis. Left: in log-log scale an apparent self-affine regime with exponent
ζ = 0.8 may be identified up to the the size of the phase domains. An indicative power law of exponent 0.8 is displayed. Right:
in linear-log scale, a simple logarithmic regime appears to describe the surface roughness as predicted by depinning models.
The straight line corresponds to a logarithmic fit performed on the 3 sets of data for lengths larger than the domain size.


