8 research outputs found

    Assessment of river sediment toxicity: combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization

    No full text
    Quantitative chemical analyses of 428 organic contaminants (OCs) indicated the presence of 313 OCs in the sediment extracts from Sava River, Croatia. Pharmaceuticals were present in higher concentrations than pesticides thus confirming their increasing threat to freshwater ecosystems. Toxicity evaluation of the sediment extracts from four locations (Jesenice, Rugvica, Galdovo and Lukavec) using zebrafish embryotoxicity test (ZET) accompanied with semi-quantitative histopathological analyses exhibited correlation with cumulative number and concentrations of OCs at the investigated sites (10.05, 15.22, 1.25, and 9.13 Āµg/g respectively). Toxicity of sediment extracts and sediment was predicted using Toxic unit (TU) approach and persistence, bioaccumulation and toxicity (PBT) ranking. Additionally, influential OCs and genes were identified by graph mining of the prior knowledge informed, site-specific chemical-gene interaction models. Predicted toxicity of sediment extracts (TUext) was similar to the results obtained by ZET and associated histopathology with Rugvica sediment being the most toxic, followed by Jesenice, Lukavec and Galdovo. Sediment TU (TUsed) favoured OCs with low octanol-water partition coefficients like herbicide glyphosate and antibiotics ciprofloxacin and sulfamethazine thus indicating locations containing higher concentrations of these OCs (Galdovo and Rugvica) as the most toxic. Results suggest that comprehensive in silico sediment toxicity predictions advocate providing equal attention to organic contaminants with either very low or very high log Kow

    Photochemical mobilization of dissolved hydrocarbon oxidation products from petroleum contaminated soil into a shallow aquifer activate human nuclear receptors

    No full text
    Elevated non-volatile dissolved organic carbon (NVDOC) concentrations in groundwater (GW) monitoring wells under oil-contaminated hydrophobic soils originating from a pipeline rupture at the National Crude Oil Spill & Natural Attenuation Research Site near Bemidji, MN are documented. We hypothesized the elevated NVDOC is comprised of water-soluble photooxidation products transported from the surface to the aquifer. We use field and laboratory samples in combination with complementary analytical methods to test this hypothesis and determine the biological response to these products. Observations from optical spectroscopy and ultrahigh-resolution mass spectrometry reveal a significant correlation between the chemical composition of NVDOC leached from photochemically weathered soils and GW monitoring wells with high NVDOC concentrations measured in the aquifer beneath the contaminated soil. Conversely, the chemical composition from the uncontaminated soil photoleachate matches the NVDOC observed in the uncontaminated wells. Contaminated GW and photodissolution leachates from contaminated soil activated biological targets indicative of xenobiotic metabolism and exhibited potential for adverse effects. Newly formed hydrocarbon oxidation products (HOPs) from fresh oil could be distinguished from those downgradient. This study illustrates another pathway for dissolved HOPs to infiltrate GW and potentially affect human health and the environment
    corecore