669 research outputs found

    Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency

    Full text link
    A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior. Using the Yoffe solution, I construct and solve a dynamical equation for the tip stress. I discuss a generic tip velocity response to local stress and find that noise-free propagation is either at steady state or oscillatory, depending only on one material parameter. Noise gives rise to intermittency and quasi-periodicity. The theory explains the velocity oscillations and the complicated behavior seen in polymeric and amorphous brittle materials. I suggest experimental verifications and new connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3 postscript figures upon request from author at [email protected] or [email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm

    Pulsenet - A Parallel Flash Sampler and Digital Processor IC for Optical SETI

    Get PDF
    PulseNet is a full-custom IC with parallel flash ADC and digital processing that enables an all-sky optical search for extraterrestrial intelligence. It integrates 448 sense amplifiers that digitize 32 analog signals at 1GS/s, and other circuits that filter samples, store candidate signals, and perform astronomical observations. Its ~250,000 CMOS transistors (TSMC 0.25μm) dissipate 1.1W at 400MHz and 2.5V

    Factorial Design Experiment to Analyze the Response of a Luminescent Photoelastic Coating

    Full text link

    Pion and Kaon Vector Form Factors

    Get PDF
    We develop a unitarity approach to consider the final state interaction corrections to the tree level graphs calculated from Chiral Perturbation Theory (χPT\chi PT) allowing the inclusion of explicit resonance fields. The method is discussed considering the coupled channel pion and kaon vector form factors. These form factors are then matched with the one loop χPT\chi PT results. A very good description of experimental data is accomplished for the vector form factors and for the ππ\pi\pi P-wave phase shifts up to s≲1.2\sqrt{s}\lesssim 1.2 GeV, beyond which multiparticle states play a non negligible role. In particular the low and resonance energy regions are discussed in detail and for the former a comparison with one and two loop χPT\chi PT is made showing a remarkable coincidence with the two loop χPT\chi PT results.Comment: 20 pages, 7 figs, to appear in Phys. Rev.

    The M-Machine Multicomputer

    Get PDF
    The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,η′→γγ∗\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure

    A consistent treatment for pion form factors in space-like and time-like regions

    Get PDF
    We write down some relevant matrix elements for the scattering and decay processes of the pion by considering a quark-meson vertex function. The pion charge and transition form factors FπF_\pi, FπγF_{\pi\gamma}, and Fπγ∗F_{\pi\gamma^*} are extracted from these matrix elements using a relativistic quark model on the light-front. We found that, the form factors FπF_\pi and FπγF_{\pi\gamma} in the space-like region agree well with experiment. Furthermore, the branching ratios of all observed decay modes of the neutral pion, that are related to the form factors FπγF_{\pi\gamma} and Fπγ∗F_{\pi\gamma^*} in the time-like region, are all consistent with the data as well. Additionally, FπF_\pi in the time-like region, which deals with the nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.
    • …
    corecore