192 research outputs found
Searching for novel carbonic anhydrase inhibitors: from virtual screening to the lab bench
Carbonic Anhydrases (CAs) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate both in prokaryotes and eukaryotes. In this context, Computer Aided Drug Design strategies have emerged as powerful tools in the modern drug discovery paradigm. In particular, using ligand- and pharmacophore-based virtual screening approaches, we identified novel chemical entities with original chemotypes, that showed an interesting and selective inhibitory activity in nanomolar/low micromolar range toward CA I and CAII, isoforms.
Herein, we present the hit-to-lead optimization process for these prototypes
Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches
The most used approaches in structure-based drug design possess peculiar characteristics with advantages and limitations, and thus the management of complementary data from various techniques is of particular interest to synergistically achieve the development of effective enzyme inhibitors. In this Letter, we describe the application of experimental and computational techniques to study the interactions between human carbonic anhydrases and sulfonamide inhibitors. In particular, a series of affinity-labeled carbonic anhydrase inhibitors containing sulfonamido photoprobes was designed and synthesized, and one of these compounds, a benzophenone derivative, was chosen as a model photoprobe/inhibitor. A photoaffinity labeling method followed by mass spectrometry analysis was then applied to elucidate the inhibitor binding site, and a comparison with X-ray crystallography and molecular dynamics simulation data was carried out, highlighting that to have a comprehensive view of the protein/inhibitor complex stabilization all three kinds of experiments are necessary
Preliminary Exploratory Study of Different Phase II Collimators
The LHC collimation system is installed and commissioned in different phases, following the natural evolution of the LHC performance. To improve cleaning efficiency towards the end of the low beta squeeze at 7TeV, and in stable physics conditions, it is foreseen to complement the 30 highly robust Phase I secondary collimators with low impedance Phase II collimators. At this stage, their design is not yet finalized. Possible options include metallic collimators, graphite jaws with a movable metallic foil, or collimators with metallic rotating jaws. As part of the evaluation of the different designs, the FLUKA Monte Carlo code is extensively used for calculating energy deposition and studying material damage and activation. This report outlines the simulation approach and defines the critical quantities involved
Do demographic and clinical features and comorbidities affect the risk of spread to an additional body site in functional motor disorders?
The aim of this study is to assess changes in the body distribution and the semeiology of functional motor disorder (FMD) in patients who reported only one or more than one body site affected at FMD onset. Data were obtained from the Italian Registry of Functional Motor Disorders, which included patients with a diagnosis of clinically definite FMDs. The relationship between FMD features and spread to other body sites was estimated by multivariate Cox regression analysis. We identified 201 (49%) patients who reported only one body site affected at FMD onset and 209 (51%) who reported multiple body sites affected at onset. FMD spread from the initial site to another site in 43/201 (21.4%) patients over 5.7 ± 7.1 years in those with only one site affected at FMD onset; FMD spread to an another body site in 29/209 (13.8%) over 5.5 ± 6.5 years. The spread of FMD was associated with non-motor functional symptoms and psychiatric comorbidities only in the patients with one body site affected at FMD onset. Our findings provide novel insight into the natural history of FMD. The number of body sites affected at onset does not seem to have a consistent influence on the risk of spread. Furthermore, our findings suggest that psychiatric comorbidities and non-motor functional symptoms may predict the spread of FMD symptoms, at least in patients with one body site affected at onset
Serum IgG against Simian Virus 40 antigens are hampered by high levels of sHLA-G in patients affected by inflammatory neurological diseases, as multiple sclerosis
Background: Many investigators detected the simian polyomavirus SV40 footprints in human brain tumors and neurologic diseases and recently it has been indicated that SV40 seems to be associated with multiple sclerosis (MS) disease. Interestingly, SV40 interacts with human leukocyte antigen (HLA) class I molecules for cell entry. HLA class I antigens, in particular non-classical HLA-G molecules, characterized by an immune-regulatory function, are involved in MS disease, and the levels of these molecules are modified according with the disease status. Objective: We investigated in serum samples, from Italian patients affected by MS, other inflammatory diseases (OIND), non-inflammatory neurological diseases (NIND) and healthy subjects (HS), SV40-antibody and soluble sHLA-G and the association between SV40-prevalence and sHLA-G levels. Methods: ELISA tests were used for SV40-antibodies detection and sHLA-G quantitation in serum samples. Results: The presence of SV40 antibodies was observed in 6 % of patients affected by MS (N = 4/63), 10 % of OIND (N = 8/77) and 15 % of NIND (N = 9/59), which is suggestive of a lower prevalence in respect to HS (22 %, N = 18/83). MS patients are characterized by higher sHLA-G serum levels (13.9 \ub1 0.9 ng/ml; mean \ub1 St. Error) in comparison with OIND (6.7 \ub1 0.8 ng/ml), NIND (2.9 \ub1 0.4 ng/ml) and HS (2.6 \ub1 0.7 ng/ml) subjects. Interestingly, we observed an inverse correlation between SV40 antibody prevalence and sHLA-G serum levels in MS patients. Conclusion: The data obtained showed a low prevalence of SV40 antibodies in MS patients. These results seems to be due to a generalized status of inability to counteract SV40 infection via antibody production. In particular, we hypothesize that SV40 immune-inhibitory direct effect and the presence of high levels of the immune-inhibitory HLA-G molecules could co-operate in impairing B lymphocyte activation towards SV40 specific peptides
Lithium suppression of tau induces brain iron accumulation and neurodegeneration
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients
- …