1,104 research outputs found

    The consequence of excess configurational entropy on fragility: the case of a polymer/oligomer blend

    Full text link
    By taking advantage of the molecular weight dependence of the glass transition of polymers and their ability to form perfectly miscible blends, we propose a way to modify the fragility of a system, from fragile to strong, keeping the same glass properties, i.e. vibrational density of states, mean-square displacement and local structure. Both slow and fast dynamics are investigated by calorimetry and neutron scattering in an athermal polystyrene/oligomer blend, and compared to those of a pure 17-mer polystyrene considered to be a reference, of same Tg. Whereas the blend and the pure 17-mer have the same heat capacity in the glass and in the liquid, their fragilities differ strongly. This difference in fragility is related to an extra configurational entropy created by the mixing process and acting at a scale much larger than the interchain distance, without affecting the fast dynamics and the structure of the glass

    On the correlation between fragility and stretching in glassforming liquids

    Full text link
    We study the pressure and temperature dependences of the dielectric relaxation of two molecular glassforming liquids, dibutyl phtalate and m-toluidine. We focus on two characteristics of the slowing down of relaxation, the fragility associated with the temperature dependence and the stretching characterizing the relaxation function. We combine our data with data from the literature to revisit the proposed correlation between these two quantities. We do this in light of constraints that we suggest to put on the search for empirical correlations among properties of glassformers. In particular, argue that a meaningful correlation is to be looked for between stretching and isochoric fragility, as both seem to be constant under isochronic conditions and thereby reflect the intrinsic effect of temperature

    Association between adenovirus viral load and mortality in pediatric allo-hct recipients. the multinational advance study

    Get PDF
    This multivariable analysis from the AdVance multicenter observational study assessed adenovirus (AdV) viremia peak, duration, and overall AdV viral burden—measured as time-averaged area under the viremia curve over 16 weeks (AAUC0-16)—as predictors of all-cause mortality in pediatric allo-HCT recipients with AdV viremia. In the 6 months following allo-HCT, 241 patients had AdV viremia ≥ 1000 copies/ml. Among these, 18% (43/241) died within 6 months of first AdV ≥ 1000 copies/ml. Measures of AdV viral peak, duration, and overall burden of infection consistently correlate with all-cause mortality. In multivariable analyses, controlling for lymphocyte recovery, patients with AdV AAUC0-16 in the highest quartile had a hazard ratio of 11.1 versus the lowest quartile (confidence interval 5.3–23.6); for peak AdV viremia, the hazard ratio was 2.2 for the highest versus lowest quartile. Both the peak level and duration of AdV viremia were correlated with short-term mortality, independent of other known risk factors for AdV-related mortality, such as lymphocyte recovery. AdV AAUC0-16, which assesses both peak and duration of AdV viremia, is highly correlated with mortality under the current standard of care. New therapeutic agents that decrease AdV AAUC0-16 have the potential of reducing mortality in this at-risk patient population

    The Role of Platelet Factor 4 in Local and Remote Tissue Damage in a Mouse Model of Mesenteric Ischemia/Reperfusion Injury

    Get PDF
    The robust inflammatory response that occurs during ischemia reperfusion (IR) injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4), during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage

    Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data

    Full text link
    On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55deg N, the second dominated by nitrogen, continues south to 35deg N, and the third, composed again mainly of methane, reaches 20deg N. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.Comment: 43 pages, 7 figures; accepted for publication in Icaru

    Comparison of Space Launch System Aerodynamic Surface Pressure Measurements from Experimental Testing and CFD

    Get PDF
    A comparison of surface pressure coefficient measurements obtained using pressure-sensitive paint (PSP) measurements with predictions from the computational fluid dynamics (CFD) code FUN3D is presented for the NASA SLS Block 1B crew vehicle. Overall, the flow features over the SLS configuration were captured by both the PSP data and CFD data at freestream Mach numbers (M(sub )) of 0.8 and 1.3. Overall, the flow features over the SLS are captured by the PSP data but the intensities of large pressure gradients are less intense than what was predicted by the CFD data. Several examples of this observation are given including the flow interaction at the booster nose cone edge, core body, and forward booster attachment hardware at M(sub ) = 0.8

    Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids

    Full text link
    The viscosity of glass-forming liquids increases by many orders of magnitude if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies suggest that this widespread phenomenon is accompanied by spatially heterogeneous dynamics [3,4], and a growing dynamic correlation length quantifying the extent of correlated particle motion [5-7]. Here we use a novel numerical method to detect and quantify spatial correlations which reveal a surprising non-monotonic temperature evolution of spatial dynamical correlations, accompanied by a second length scale that grows monotonically and has a very different nature. Our results directly unveil a dramatic qualitative change in atomic motions near the mode-coupling crossover temperature [8] which involves no fitting or indirect theoretical interpretation. Our results impose severe new constraints on the theoretical description of the glass transition, and open several research perspectives, in particular for experiments, to confirm and quantify our observations in real materials.Comment: 7 page
    • …
    corecore