852 research outputs found

    Universal Rephasing Dynamics after a Quantum Quench via Sudden Coupling of Two Initially Independent Condensates

    Get PDF
    We consider a quantum quench in which two initially independent condensates are suddenly coupled and study the subsequent “rephasing” dynamics. For weak tunneling couplings, the time evolution of physical observables is predicted to follow universal scaling laws, connecting the short-time dynamics to the long-time nonperturbative regime. We first present a two-mode model valid in two and three dimensions and then move to one dimension, where the problem is described by a gapped sine-Gordon theory. Combining analytical and numerical methods, we compute universal time-dependent expectation values, allowing a quantitative comparison with future experiments.Physic

    Dissipative Preparation of Spin Squeezed Atomic Ensembles in a Steady State

    Get PDF
    We present and analyze a new approach for the generation of atomic spin squeezed states. Our method involves the collective coupling of an atomic ensemble to a decaying mode of an open optical cavity. We demonstrate the existence of a collective atomic dark-state, decoupled from the radiation field. By explicitly constructing this state we find that it can feature spin squeezing bounded only by the Heisenberg limit. We show that such dark states can be deterministically prepared via dissipative means, thus turning dissipation into a resource for entanglement. The scaling of the phase sensitivity taking realistic imperfections into account is discussed.Comment: 5 pages, 4 figure

    Quantum and classical Floquet prethermalization

    Full text link
    Time-periodic (Floquet) driving is a powerful way to control the dynamics of complex systems, which can be used to induce a plethora of new physical phenomena. However, when applied to many-body systems, Floquet driving can also cause heating, and lead to a featureless infinite-temperature state, hindering most useful applications. It is therefore important to find mechanisms to suppress such effects. Floquet prethermalization refers to the phenomenon where many-body systems subject to a high-frequency periodic drive avoid heating for very long times, instead tending to transient states that can host interesting physics. Its key signature is a strong parametric suppression of the heating rate as a function of the driving frequency. Here, we review our present understanding of this phenomenon in both quantum and classical systems, and across various models and methods. In particular, we present rigorous theorems underpinning Floquet prethermalization in quantum spin and fermionic lattice systems, extensions to systems with degrees of freedom that have unbounded local dimension. Further, we briefly describe applications to novel nonequilibrium phases of matter, and recent experiments probing prethermalization with quantum simulators. We close by describing the frontiers of Floquet prethermalization beyond strictly time-periodic drives, including time-quasiperiodic driving and long-lived quasi-conserved quantities enabled by large separation of energy scales.Comment: review paper, 15 pages, comments are welcom

    A map-matching algorithm dealing with sparse cellular fingerprint observations

    Get PDF
    The widespread availability of mobile communication makes mobile devices a resource for the collection of data about mobile infrastructures and user mobility. In these contexts, the problem of reconstructing the most likely trajectory of a device on the road network on the basis of the sequence of observed locations (map-matching problem) turns out to be particularly relevant. Different contributions have demonstrated that the reconstruction of the trajectory of a device with good accuracy is technically feasible even when only a sparse set of GNSS positions is available. In this paper, we face the problem of coping with sparse sequences of cellular fingerprints. Compared to GNSS positions, cellular fingerprints provide coarser spatial information, but they work even when a device is missing GNSS positions or is operating in an energy saving mode. We devise a new map-matching algorithm, that exploits the well-known Hidden Markov Model and Random Forests to successfully deal with noisy and sparse cellular observations. The performance of the proposed solution has been tested over a medium-sized Italian city urban environment by varying both the sampling of the observations and the density of the fingerprint map as well as by including some GPS positions into the sequence of fingerprint observations

    Analisi della risposta dinamica di poliuretani termoplastici

    Get PDF

    The microstructure, texture and mechanical properties of AS-ECAE Interstitial-free steel and copper

    Get PDF
    A comparison between the microstructure, texture and mechanical properties of bcc interstitial-free (IF) steel and fcc copper (Cu) for up to N = 8 passes Equal Channel Angular Extrusion (ECAE) via route BC processing was undertaken. Transmission Electron Microscopy (TEM) and Electron Back-Scattering Diffraction (EBSD) studies revealed that the deformation microstructures of both metals evolves from low-angled microbands and dislocation cells after N=2 passes towards more equiaxed, homogeneous subgrain/grain structures comprising higher-angles of misorientation after N = 8 passes. In both metals, the percentage rise in ÎŁ3 and random boundaries are attributed to mechanisms that favour low-energy boundary configurations during ECAE. Texture evolution involves gradual changes in individual component strengths during multi-pass ECAE. The bcc and fcc textures are correlated by interchanging the Miller indices of the slip plane and slip direction between the two cubic crystal systems. The uniaxial tensile curves of both materials are representative of significant cold-working and depict higher 0.2% proof stresses, a small period of uniform elongation, necking and lastly, failure via geometrical softening. Constitutive modelling suggests that rather than a change in deformation mechanism, the preservation of ductility up to N = 8 passes is associated with an increase in the mean free path of dislocations; with slip via dislocation glide remaining as the dominant carrier of plastic strain in both metals

    CLAM, a continuous line alignment and monitoring method for RICH mirrors

    Get PDF
    A method is proposed for the angular alignment of RICH mirrors and for its monitoring, in particular for the COMPASS RICH-1 mirror system. Observing (by means of four cameras) apparent discontinuities in the images of continuous linear objects reflected by the mirrors surface, a relative misalignment of adjacent mirrors can be deduced and then corrected. The method can attain a sensitivity of at least 0.1 mrad, and can also be applied on-line to keep under control the stability of the mirrors during data taking

    Study of MicroPattern Gaseous detectors with novel nanodiamond based photocathodes for single photon detection in EIC RICH

    Full text link
    Identification of high momentum hadrons at the future EIC is crucial, gaseous RICH detectors are therefore viable option. Compact collider setups impose to construct RICHes with small radiator length, hence significantly limiting the number of detected photons. More photons can be detected in the far UV region, using a windowless RICH approach. QE of CsI degrades under strong irradiation and air contamination. Nanodiamond based photocathodes (PCs) are being developed as an alternative to CsI. Recent development of layers of hydrogenated nanodiamond powders as an alternative photosensitive material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R\&D. We report about the initial phase of our studies.Comment: 3 pages, 5 figures, RICH2018 conference proceedin

    Simulation studies related to the particle identification by the forward and backward RICH detectors at Electron Ion Collider

    Full text link
    The Electron-Ion collider (EIC) will be the ultimate facility to study the dynamics played by the colored quarks and gluons to the emergence of the global phenomenology of the nucleons and nuclei as described by Quantum Chromodynamics. The physics programs will greatly rely on efficient particle identification (PID) in both the forward and the backward regions. The forward and the backward RICHes of the EIC have to be able to cover wide acceptance and momentum ranges; in the forward region a dual radiator RICH (dRICH) is foreseen and in the backward region a proximity-focusing RICH can be foreseen to be employed. The geometry and the performance studies of the dRICH have been performed as prescribed in the EIC Yellow Report using the ATHENA software framework. This part of our work reports the effort following the call for EIC detector proposal the studies related to the forward and the backward RICHes performance. In the forward region, dRICH performance showed a pion-kaon separation from around 1 GeV/c to 50 GeV/c at a three sigma level; the proximity focusing RICH (pfRICH) foreseen for the backward region can reach three sigma separation up to 3 GeV/c for e/π\pi and up to 10 GeV/c for π\pi/K mass hypothesis.Comment: 4 pages, 8 figure
    • …
    corecore