411 research outputs found

    Effects of selenium biofortification on crop nutritional quality

    Get PDF
    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulphur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health

    Introduction to Functional Analysis for Engineers

    Get PDF

    Studies on the Biosynthesis of Psoralen and Bergapten in the Leaves of Ficus carica

    Get PDF
    With the aim of studying the biosynthesis of psoralen and bergapten, two furocoumarins present in the leaves of "Ficus carica" (Moraceae), the Authors, continuing preceding researchs on this topic, have fed the leaves with the following labelled precursors: 4′,5′-dihydropsoralen, 4′,5′-dihydrobergapten, 7-hydroxycoumarin, 5,7-dihydroxycoumarin and 5-methoxy-7-hydroxycoumarin. The results obtained indicate that all these substances are certain biogenetic precursors for psoralen and bergapten. On the basis of the results obtained the biosynthetic pathway of furocoumarins seems to involve first of all the formation of a coumarinic derivative 7-hydroxylated, then an isoprenylation reaction which leads to the formation of the hydrogenated furan ring, finally dehydrogenation of the 4′,5′-dihydrofurocoumarins to psoralen and bergapten

    The Phototoxicity of Fluvastatin, an HMG-CoA Reductase Inhibitor, Is Mediated by the formation of a Benzocarbazole-Like Photoproduct

    Get PDF
    In this paper, we have investigated the mechanism of phototoxicity of fluvastatin, an 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, in human keratinocytes cell line NCTC-2544. Fluvastatin underwent rapid photodegradation upon Ultraviolet-A (UVA) irradiation in buffered aqueous solution as shown by the changes in absorption spectra. Interestingly, no isosbestic points were observed but only a fast appearance of a spectral change, indicative of the formation of a new chromophore. The isolation and characterization of the main photoproduct revealed the formation of a polycyclic compound with a benzocarbazole-like structure. This product was also evaluated for its phototoxic potential. Cell phototoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide test after 72 h from the irradiation in the presence of fluvastatin. The results showed a reduction of the cell viability in a concentration and UVA dose-dependent manner. Surprisingly, the photoproduct showed a dramatic decrease of the cell viability that occurred at concentrations of an order of magnitude lower than the parent compound. Flow cytometric analysis indicated that fluvastatin and its main photoproduct induced principally necrosis as revealed by the large appearance of propidium iodide-positive cells and confirmed also by the rapid drop in cellular adenosine triphosphate levels. Interestingly, a rapid increase of intracellular calcium followed by an extensive cell lipid membrane peroxidation and a significant oxidation of model proteins were induced by fluvastatin and its photoproduct, suggesting that these compounds exerted their toxic effect mainly in the cellular membranes. On the basis of our results, the phototoxicity of fluvastatin may be mediated by the formation of benzocarbazole-like photoproduct that acts as strong photosensitizer

    Supercritical Carbon Dioxide Extraction of Lyophilized Aristotelia chilensis (Mol.) Stuntz Berries as Pre-treatment for Enhanced Anthocyanin Recovery

    Get PDF
    The supercritical carbon dioxide extraction of lyophilized berries of Aristotelia chilensis (Mol.) Stuntz was studied as possible pre-treatment for enhanced anthocyanin recovery. Effect of pressure, temperature, and process time on the extracted oil yields and on the anthocyanins recovery in the pre-treated fractions were considered. The operating parameters were optimized using the central composite design, and extractions were run in the pressure, temperature, and time ranges of 99.6 to 200.4 bar, 36.6 to 53.4 degrees C, and 0.7-2.3 h. The successive multiple regression analysis indicated pressure and time as major influencing parameters on the extraction yield. Those parameters induced no clear changes in the fatty acid composition of almost all the extracted oils, obtaining an aver-age linoleic acid amount between 35-44 % weight in the lipophilic fractions. Standard-ized methanol extractions demonstrated the influence of the different conditions in the SCO2 pre-treatment processes, resulting in extracted anthocyanin increments ranging from 9 to 26 %

    Studies on the Biosynthesis of Some Furocoumarins Present in Ruta graveolens

    Get PDF
    The biosynthesis of some furocoumarins present in Ruta graveolens has been studied administering labeled psoralen, xanthotoxin, rutaretin, marmesin and 7-hydroxycoumarin-derivatives. The results obtained indicate that the biosynthetic pathway involves not only psoralen, but also xanthotoxin and bergapten, by means of methoxylation or demethoxylation reactions. Moreover results achieved from administering rutaretin demonstrate that this substance is a new very effective natural precursor for xanthotoxin; in a parallel way marmesin is incorporated into psoralen. The reported results indicate that also at the stage of natural 4′,5′-dihydrofurocoumarins intermediates an interconversion can occur. Finally the essential role of umbelliferone in the biosynthesis of furocoumarins has been confirmed

    Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa mill. and diplotaxis tenuifolia) grown in hydroponics

    Get PDF
    Biofortification can be exploited to enrich plants in selenium (Se), an essential micronutrient for humans. Selenium as selenate was supplied to two rocket species, Eruca sativa Mill. (salad rocket) and Diplotaxis tenuifolia (wild rocket), at 0-40 \u3bcM in hydroponics and its effects on the content and profile of sulphur (S)-compounds and other phytochemicals was evaluated. D. tenuifolia accumulated more total Se and selenocysteine than E. sativa, concentrating up to ~300 mg Se kg 121 dry weight from 10-40 \u3bcM Se. To ensure a safe and adequate Se intake, 30 and 4 g fresh leaf material from E. sativa grown with 5 and 10-20 \u3bcM Se, respectively or 4 g from D. tenuifolia supplied with 5 \u3bcM Se was estimated to be optimal for consumption. Selenium supplementation at or above 10 \u3bcM differentially affected S metabolism in the two species in terms of the transcription of genes involved in S assimilation and S-compound accumulation. Also, amino acid content decreased with Se inE. sativa but increased in D. tenuifolia and the amount of phenolics was more reduced in D. tenuifolia. In conclusion, selenate application in hydroponics allowed Se enrichment of rocket. Furthermore, Se at low concentration (5 \u3bcM) did not significantly affect accumulation of phytochemicals and plant defence S-metabolites

    Identification of <i>Salvia haenkei</i> as gerosuppressant agent by using an integrated senescence-screening assay.

    Get PDF
    Cellular senescence is a stable cell cycle arrest that is the causative process of aging. The PI3K/AKT/mTOR pathway is implicated in the control of cellular senescence and inhibitors of this pathway have been successfully used for life span prolongation experiments in mammals. PTEN is the major regulator of the PI3K/AKT/mTOR pathway and loss of PTEN promotes a senescence response termed PICS. Here we report a novel-screening assay, for the identification of compounds that block different types of senescence response. By testing a library of more than 3000 natural and chemical compounds in PTEN deficient cells we have found that an extract from &lt;i&gt;Salvia haenkei&lt;/i&gt; (SH), a native plant of Bolivia is a potent inhibitor of PICS. SH also decreases replicative and UV-mediated senescence in human primary fibroblasts and in a model of &lt;i&gt;in vitro&lt;/i&gt; reconstructed human epidermis. Mechanistically, SH treatment affects senescence driven by UV by interfering with IL1-α signalling. Pre-clinical and clinical testing of this extract by performing toxicity and irritability evaluation &lt;i&gt;in vitro&lt;/i&gt; also demonstrate the safety of SH extract for clinical use as anti-aging skin treatment
    corecore