8 research outputs found
Alternatively spliced Robo2 isoforms in zebrafish and rat
Robo2, a member of the robo gene family, functions as a repulsive axon guidance receptor as well as a regulator of cell migration and tissue morphogenesis in different taxa. In this study, a novel isoform of the zebrafish robo2 (robo2_tv2), which included an otherwise alternatively spliced exon (CAE), has been characterized. Robo2_tv2 is expressed differentially in most non-neuronal tissues of adult zebrafish whereas robo2_tv1 expression to a great extent is restricted to the brain and eye. In zebrafish, robo2_tv2 exhibits a very-low-level basal expression starting from 1 day post fertilization until the mid-larval stages, at which time its expression increases dramatically and could be detected throughout adulthood. Our findings demonstrate that the amino acid sequence coded by CAE of the robo2 gene is highly conserved between zebrafish and mammals, and also contains conserved motifs shared with robo1 and robo4 but not with robo3. Furthermore, we provide an account of differential transcription of the CAE homolog in various tissues of the adult rat. These results suggest that the alternatively spliced robo2 isoforms may exhibit tissue specificity. © Springer-Verlag 2006
The contribution of de novo coding mutations to autism spectrum disorder
Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females