751 research outputs found

    Power-law carrier dynamics in semiconductor nanocrystals at nanosecond time scales

    Full text link
    We report the observation of power law dynamics on nanosecond to microsecond time scales in the fluorescence decay from semiconductor nanocrystals, and draw a comparison between this behavior and power-law fluorescence blinking from single nanocrystals. The link is supported by comparison of blinking and lifetime data measured simultaneously from the same nanocrystal. Our results reveal that the power law coefficient changes little over the nine decades in time from 10 ns to 10 s, in contrast with the predictions of some diffusion based models of power law behavior.Comment: 3 pages, 2 figures, compressed for submission to Applied Physics Letter

    The broadening of Fe II lines by neutral hydrogen collisions

    Full text link
    Data for the broadening of 24188 Fe II lines by collisions with neutral hydrogen atoms have been computed using the theory of Anstee & O'Mara as extended to singly ionised species and higher orbital angular momentum states by Barklem & O'Mara. Data have been computed for all Fe II lines between observed energy levels in the line lists of Kurucz with log gf > -5 for which the theory is applicable. The variable energy debt parameter Ep used in computing the second order perturbation theory potential is chosen to be consistent with the long range dispersion interaction constant C6 computed using the f-values from Kurucz.Comment: Accepted for A&A. 5 pages, 5 figures, 2 electronic tables. Tables will be available via CDS; presently also at http://www.astro.uu.se/~barklem/papers/fe2_data.tar.g

    The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    Get PDF
    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states, and the H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus, gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the ``square root'' part of the curve-of-growth, then the expected ratio of ortho and para vibrational line strengths is the square root of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models which illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory (ISO) measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for publication in Ap

    Rate coefficients for rovibrational transitions in H_2 due to collisions with He

    Get PDF
    We present quantum mechanical and quasiclassical trajectory calculations of cross sections for rovibrational transitions in ortho- and para-H_2 induced by collisions with He atoms. Cross sections were obtained for kinetic energies between 10^-4 and 3 eV, and the corresponding rate coefficients were calculated for the temperature range 100<T<4000 K. Comparisons are made with previous calculations.Comment: 21 pages, 2 figures, AAS, eps

    Ultracold collision properties of metastable alkaline-earth atoms

    Get PDF
    Ultra-cold collisions of spin-polarized 24Mg,40Ca, and 88Sr in the metastable 3P2 excited state are investigated. We calculate the long-range interaction potentials and estimate the scattering length and the collisional loss rate as a function of magnetic field. The estimates are based on molecular potentials between 3P2 alkaline-earth atoms obtained from ab initio atomic and molecular structure calculations. The scattering lengths show resonance behavior due to the appearance of a molecular bound state in a purely long-range interaction potential and are positive for magnetic fields below 50 mT. A loss-rate model shows that losses should be smallest near zero magnetic field and for fields slightly larger than the resonance field, where the scattering length is also positive.Comment: 4 pages, 4 figure

    Separation and identification of dominant mechanisms in double photoionization

    Full text link
    Double photoionization by a single photon is often discussed in terms of two contributing mechanisms, {\it knock-out} (two-step-one) and {\it shake-off} with the latter being a pure quantum effect. It is shown that a quasi-classical description of knock-out and a simple quantum calculation of shake-off provides a clear separation of the mechanisms and facilitates their calculation considerably. The relevance of each mechanism at different photon energies is quantified for helium. Photoionization ratios, integral and singly differential cross sections obtained by us are in excellent agreement with benchmark experimental data and recent theoretical results.Comment: 4 pages, 5 figure

    Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot

    Get PDF
    We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than the corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure

    A Search for EUV Emission from Comets with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    Get PDF
    We have obtained EUV spectra between 90 and 255 \AA of the cometsC/2002 T7 (LINEAR), C/2001 Q4 (NEAT), and C/2004 Q2 (Machholz) near their perihelion passages in 2004 with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS). We obtained contemporaneous data on Comet NEAT Q4 with the ChandraChandra X-ray Observatory ACIS instrument, marking the first simultaneous EUV and X-ray spectral observations of a comet. The total CHIPS/EUV observing times were 337 ks for Q4, 234 ks for T7, and 483 ks for Machholz and for both CHIPS and ChandraChandra we calculate we have captured all the comet flux in the instrument field of view. We set upper limits on solar wind charge exchange emission lines of O, C, N, Ne and Fe occurring in the spectral bandpass of CHIPS. The spectrum of Q4 obtained with ChandraChandra can be reproduced by modeling emission lines of C, N O, Mg, Fe, Si, S, and Ne solar wind ions. The measured X-ray emission line intensities are consistent with our predictions from a solar wind charge exchange model. The model predictions for the EUV emission line intensities are determined from the intensity ratios of the cascading X-ray and EUV photons arising in the charge exchange processes. They are compatible with the measured limits on the intensities of the EUV lines. For comet Q4, we measured a total X-ray flux of 3.7×1012\times 10^{-12} ergs cm2^{-2} s1^{-1}, and derive from model predictions a total EUV flux of 1.5×1012\times 10^{-12} erg cm2^{-2} s1^{-1}. The CHIPS observations occurred predominantly while the satellite was on the dayside of Earth. For much of the observing time, CHIPS performed observations at smaller solar angles than it was designed for and EUV emission from the Sun scattered into the instrument limited the sensitivity of the EUV measurements.Comment: 28 pages total, 4 tables, 7 figures. Accepted by The Astrophysical Journa

    Near-Infrared Spectroscopy of Molecular Filaments in the Reflection Nebula NGC 7023

    Get PDF
    We present near-infrared spectroscopy of fluorescent molecular hydrogen (H_2) emission from molecular filaments in the reflection nebula NGC 7023. We derive the relative column densities of H_2 rotational-vibrational states from the measured line emission and compare these results with several model photodissociation regions covering a range of densities, incident UV-fields, and excitation mechanisms. Our best-fit models for one filament suggest, but do not require, either a combination of different densities, suggesting clumps of 10^6 cm^{-3} in a 10^4 - 10^5 cm^{-3} filament, or a combination of fluorescent excitation and thermally-excited gas, perhaps due to a shock from a bipolar outflow. We derive densities and UV fields for these molecular filaments that are in agreement with previous determinations.Comment: ApJ accepted, 26 pages including 5 embedded figures, uses AASTEX. Also available at http://www-astronomy.mps.ohio-state.edu/~martini/pubs.htm
    corecore