1,000 research outputs found
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Global Versus Local Computations: Fast Computing with Identifiers
This paper studies what can be computed by using probabilistic local
interactions with agents with a very restricted power in polylogarithmic
parallel time. It is known that if agents are only finite state (corresponding
to the Population Protocol model by Angluin et al.), then only semilinear
predicates over the global input can be computed. In fact, if the population
starts with a unique leader, these predicates can even be computed in a
polylogarithmic parallel time. If identifiers are added (corresponding to the
Community Protocol model by Guerraoui and Ruppert), then more global predicates
over the input multiset can be computed. Local predicates over the input sorted
according to the identifiers can also be computed, as long as the identifiers
are ordered. The time of some of those predicates might require exponential
parallel time. In this paper, we consider what can be computed with Community
Protocol in a polylogarithmic number of parallel interactions. We introduce the
class CPPL corresponding to protocols that use , for some k,
expected interactions to compute their predicates, or equivalently a
polylogarithmic number of parallel expected interactions. We provide some
computable protocols, some boundaries of the class, using the fact that the
population can compute its size. We also prove two impossibility results
providing some arguments showing that local computations are no longer easy:
the population does not have the time to compare a linear number of consecutive
identifiers. The Linearly Local languages, such that the rational language
, are not computable.Comment: Long version of SSS 2016 publication, appendixed version of SIROCCO
201
Extinction in Lotka-Volterra model
Competitive birth-death processes often exhibit an oscillatory behavior. We
investigate a particular case where the oscillation cycles are marginally
stable on the mean-field level. An iconic example of such a system is the
Lotka-Volterra model of predator-prey competition. Fluctuation effects due to
discreteness of the populations destroy the mean-field stability and eventually
drive the system toward extinction of one or both species. We show that the
corresponding extinction time scales as a certain power-law of the population
sizes. This behavior should be contrasted with the extinction of models stable
in the mean-field approximation. In the latter case the extinction time scales
exponentially with size.Comment: 11 pages, 17 figure
R-local Delaunay inhibition model
Let us consider the local specification system of Gibbs point process with
inhib ition pairwise interaction acting on some Delaunay subgraph specifically
not con taining the edges of Delaunay triangles with circumscribed circle of
radius grea ter than some fixed positive real value . Even if we think that
there exists at least a stationary Gibbs state associated to such system, we do
not know yet how to prove it mainly due to some uncontrolled "negative"
contribution in the expression of the local energy needed to insert any number
of points in some large enough empty region of the space. This is solved by
introducing some subgraph, called the -local Delaunay graph, which is a
slight but tailored modification of the previous one. This kind of model does
not inherit the local stability property but satisfies s ome new extension
called -local stability. This weakened property combined with the local
property provides the existence o f Gibbs state.Comment: soumis \`{a} Journal of Statistical Physics 27 page
Mean-Field Interacting Boson Random Point Fields in Weak Harmonic Traps
A model of the mean-field interacting boson gas trapped by a weak harmonic
potential is considered by the \textit{boson random point fields} methods. We
prove that in the Weak Harmonic Trap (WHT) limit there are two phases
distinguished by the boson condensation and by a different behaviour of the
local particle density. For chemical potentials less than a certain critical
value, the resulting Random Point Field (RPF) coincides with the usual boson
RPF, which corresponds to a non-interacting (ideal) boson gas. For the chemical
potentials greater than the critical value, the boson RPF describes a divergent
(local) density, which is due to \textit{localization} of the macroscopic
number of condensed particles. Notice that it is this kind of transition that
observed in experiments producing the Bose-Einstein Condensation in traps
Countable Random Sets: Uniqueness in Law and Constructiveness
The first part of this article deals with theorems on uniqueness in law for
\sigma-finite and constructive countable random sets, which in contrast to the
usual assumptions may have points of accumulation. We discuss and compare two
approaches on uniqueness theorems: First, the study of generators for
\sigma-fields used in this context and, secondly, the analysis of hitting
functions. The last section of this paper deals with the notion of
constructiveness. We will prove a measurable selection theorem and a
decomposition theorem for constructive countable random sets, and study
constructive countable random sets with independent increments.Comment: Published in Journal of Theoretical Probability
(http://www.springerlink.com/content/0894-9840/). The final publication is
available at http://www.springerlink.co
Percolation in invariant Poisson graphs with i.i.d. degrees
Let each point of a homogeneous Poisson process in R^d independently be
equipped with a random number of stubs (half-edges) according to a given
probability distribution mu on the positive integers. We consider
translation-invariant schemes for perfectly matching the stubs to obtain a
simple graph with degree distribution mu. Leaving aside degenerate cases, we
prove that for any mu there exist schemes that give only finite components as
well as schemes that give infinite components. For a particular matching scheme
that is a natural extension of Gale-Shapley stable marriage, we give sufficient
conditions on mu for the absence and presence of infinite components
Translation-invariance of two-dimensional Gibbsian point processes
The conservation of translation as a symmetry in two-dimensional systems with
interaction is a classical subject of statistical mechanics. Here we establish
such a result for Gibbsian particle systems with two-body interaction, where
the interesting cases of singular, hard-core and discontinuous interaction are
included. We start with the special case of pure hard core repulsion in order
to show how to treat hard cores in general.Comment: 44 pages, 6 figure
Influence Diffusion in Social Networks under Time Window Constraints
We study a combinatorial model of the spread of influence in networks that
generalizes existing schemata recently proposed in the literature. In our
model, agents change behaviors/opinions on the basis of information collected
from their neighbors in a time interval of bounded size whereas agents are
assumed to have unbounded memory in previously studied scenarios. In our
mathematical framework, one is given a network , an integer value
for each node , and a time window size . The goal is to
determine a small set of nodes (target set) that influences the whole graph.
The spread of influence proceeds in rounds as follows: initially all nodes in
the target set are influenced; subsequently, in each round, any uninfluenced
node becomes influenced if the number of its neighbors that have been
influenced in the previous rounds is greater than or equal to .
We prove that the problem of finding a minimum cardinality target set that
influences the whole network is hard to approximate within a
polylogarithmic factor. On the positive side, we design exact polynomial time
algorithms for paths, rings, trees, and complete graphs.Comment: An extended abstract of a preliminary version of this paper appeared
in: Proceedings of 20th International Colloquium on Structural Information
and Communication Complexity (Sirocco 2013), Lectures Notes in Computer
Science vol. 8179, T. Moscibroda and A.A. Rescigno (Eds.), pp. 141-152, 201
The Bivariate Normal Copula
We collect well known and less known facts about the bivariate normal
distribution and translate them into copula language. In addition, we prove a
very general formula for the bivariate normal copula, we compute Gini's gamma,
and we provide improved bounds and approximations on the diagonal.Comment: 24 page
- …