5,502 research outputs found

    The story of Oh: the aesthetics and rhetoric of a common vowel sound

    Get PDF
    Studies in Musical Theatre is the only peer-reviewed journal dedicated to musical theatre. It was launched in 2007 and is now in its seventh volume. It has an extensive international readership and is edited by Dominic Symonds and George Burrows. This article investigates the use of the ‘word’ ‘Oh’ in a variety of different performance idioms. Despite its lack of ‘meaning’, the sound is used in both conversation and poetic discourse, and I discuss how it operates communicatively and expressively through contextual resonances, aesthetic manipulation and rhetorical signification. The article first considers the aesthetically modernist work of Cathy Berberian in Bussotti’s La Passion Selon Sade; then it considers the rhetorically inflected use of ‘Oh’ to construct social resonance in popular song;finally, it discusses two important uses of the sound ‘Oh’ which bookend the Broadway musical Oklahoma!, serving to consolidate the allegorical and musico-dramatic narrative of the show

    Understanding the agility of running birds: Sensorimotor and mechanical factors in avian bipedal locomotion

    Get PDF
    Birds are a diverse and agile lineage of vertebrates that all use bipedal locomotion for at least part of their life. Thus birds provide a valuable opportunity to investigate how biomechanics and sensorimotor control are integrated for agile bipedal locomotion. This review summarizes recent work using terrain perturbations to reveal neuromechanical control strategies used by ground birds to achieve robust, stable and agile running. Early experiments in running guinea fowl aimed to reveal the immediate intrinsic mechanical response to an unexpected drop ('pothole') in terrain. When navigating the pothole, guinea fowl experience large changes in leg posture in the perturbed step, which correlates strongly with leg loading and perturbation recovery. Analysis of simple theoretical models of running has further confirmed the crucial role of swing-leg trajectory control for regulating foot contact timing and leg loading in uneven terrain. Coupling between body and leg dynamics results in an inherent trade-off in swing leg retraction rate for fall avoidance versus injury avoidance. Fast leg retraction minimizes injury risk, but slow leg retraction minimizes fall risk. Subsequent experiments have investigated how birds optimize their control strategies depending on the type of perturbation (pothole, step, obstacle), visibility of terrain, and with ample practice negotiating terrain features. Birds use several control strategies consistently across terrain contexts: 1) independent control of leg angular cycling and leg length actuation, which facilitates dynamic stability through simple control mechanisms, 2) feedforward regulation of leg cycling rate, which tunes foot-contact timing to maintain consistent leg loading in uneven terrain (minimizing fall and injury risks), 3) load-dependent muscle actuation, which rapidly adjusts stance push-off and stabilizes body mechanical energy, and 4) multi-step recovery strategies that allow body dynamics to transiently vary while tightly regulating leg loading to minimize risks of fall and injury. In future work, it will be interesting to investigate the learning and adaptation processes that allow animals to adjust neuromechanical control mechanisms over short and long timescales

    Quench dynamics and non equilibrium phase diagram of the Bose-Hubbard model

    Full text link
    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulating phase. For large values of the final interaction strength the system approaches a distinctly non-equilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct non-equilibrium regimes is surprising given the non-integrability of the Bose-Hubbard model. We relate this phenomena to the role of quasi-particle interactions in the Mott insulating state

    The ‘Little Ice Age’ in the Southern Hemisphere in the context of the last 3000 years : Peat-based proxy-climate data from Tierra del Fuego

    Get PDF
    DM’s research (at Department of Earth Sciences, Uppsala University) was supported through a European Community Marie Curie Fellowship (Contract HPMF-CT-2000-01056).Peer reviewedPostprin

    Dynamics of Rumor Spreading in Complex Networks

    Full text link
    We derive the mean-field equations characterizing the dynamics of a rumor process that takes place on top of complex heterogeneous networks. These equations are solved numerically by means of a stochastic approach. First, we present analytical and Monte Carlo calculations for homogeneous networks and compare the results with those obtained by the numerical method. Then, we study the spreading process in detail for random scale-free networks. The time profiles for several quantities are numerically computed, which allow us to distinguish among different variants of rumor spreading algorithms. Our conclusions are directed to possible applications in replicated database maintenance, peer to peer communication networks and social spreading phenomena.Comment: Final version to appear in PR

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure

    Efficient simulation of one-dimensional quantum many-body systems

    Get PDF
    We present a numerical method to simulate the time evolution, according to a Hamiltonian made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme depends on the amount of the entanglement involved in the simulated evolution. Numerical analysis indicate that this method can be used, for instance, to efficiently compute time-dependent properties of low-energy dynamics of sufficiently regular but otherwise arbitrary one-dimensional quantum many-body systems.Comment: 4 pages, 1 figur

    Don't break a leg: Running birds from quail to ostrich prioritise leg safety and economy in uneven terrain

    Get PDF
    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics
    corecore