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We present a numerical method to simulate the time evolution, according to a generic Hamiltonian
made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme
depends on the amount of entanglement involved in the simulated evolution. Numerical analysis
indicates that this method can be used, for instance, to efficiently compute time-dependent properties
of low-energy dynamics in sufficiently regular but otherwise arbitrary one-dimensional quantum
many-body systems. As by-products, we describe two alternatives to the density matrix renormalization
group method.
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grows linearly in the number of systems. We also propose sense to be specified later. In addition, for the sake of
Since the early days of quantum theory, progress in
understanding the physics of quantum many-body sys-
tems has been hindered by a serious, well-known compu-
tational obstacle. The number of parameters required to
describe an arbitrary state of n quantum systems grows
exponentially with n, a fact that renders the simulation of
generic quantum many-body dynamics intractable.

A number of techniques have been developed to ana-
lyze specific quantum many-body problems. Exactly and
quasiexactly solvable models [1] offer valuable insight in
particular cases, and their solutions can be used as the
basis for perturbative studies. With quantum Monte Carlo
(QMC) calculations [2], static properties of the ground
state of a large class of many-body Hamiltonians can be
evaluated. In one-dimensional settings, including quan-
tum spin chains, ground-state expectation values for local
observables, such as the energy and two-point correlation
functions, can also be computed with extraordinary ac-
curacy with the density matrix renormalization group
(DMRG) [3].

The importance and ingenuity of these methods cannot
be overstated. However, solvable models and their exten-
sions using perturbation theory apply to a very restricted
class of physical systems, whereas QMC and DMRG
calculations produce reliable outcomes mainly only for
static properties of certain ground states. In particular, the
efficient simulation of time-dependent properties remains
an open problem in most nonperturbative cases. In addi-
tion to severely limiting our understanding of quantum
collective phenomena, such as high-TC superconductivity
and quantum phase transitions, the inability to efficiently
simulate quantum dynamics has deep implications in
quantum information science [4]. It is also a practical
obstacle for the development of technology based on
engineered quantum systems.

In this Letter, we describe a numerical scheme to
simulate certain quantum many-body dynamics. We ex-
plain how to efficiently simulate Hamiltonian evolutions
in one-dimensional arrays of quantum systems, such as
quantum spin chains, with a computational cost that
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two alternatives to the DMRG scheme. The key idea is to
exploit the fact that, in one spatial dimension, low energy
quantum dynamics are often only slightly entangled. We
employ a technique developed in the context of quantum
computation [5]—thereby illustrating how tools from
quantum information science may find applications in
other areas of quantum physics (see also [6–9]). The
present numerical method can be used, for instance, to
determine the time-dependent vacuum expectation value

hOy
x;tO0;0i; (1)

where O is a local Heisenberg operator. In some cases,
and for specific choices of O, the Fourier transform
S�k;!� of (1) is accessible experimentally, e.g., through
neutron scattering for phonon dynamics in a solid. This
allows for a direct comparison of experimental and simu-
lated data.

We consider a one-dimensional array of quantum sys-
tems, labeled by index l, l 2 f1; . . . ; ng, each one de-
scribed by a local Hilbert space H d of finite dimension
d. Given a pure state j�i 2 H 
n

d of the n systems, we
characterize the entanglement between a block A contain-
ing the m first systems, l 2 f1; . . . ; mg, and a block B
containing the n�m remaining systems by �A, the
rank of the reduced density matrix �A for block A,

�A � rank��A�; �A � trB�j�ih�j�: (2)

Central in the present discussion is parameter �,

� � max
m
�A; (3)

the maximum, over the size m 2 f1; . . . ; n� 1g of block
A, of the entanglement between blocks A and B [10].

We focus on the numerical simulation of a collective
evolution of the n systems according to a generic (pos-
sibly time-dependent) Hamiltonian Hn made of local
interactions [11]. The essential requirement for the nu-
merical method to be efficient will be that the entangle-
ment � (in practice a related, effective parameter ��)
remains ‘‘small’’ during the simulated dynamics, in a
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simplicity, here we consider only Hamiltonians made of
arbitrary single-body and two-body terms, with the in-
teractions restricted to nearest neighbors,

Hn 
Xn
l1

K�l�
1 �

Xn�1

l1

K�l;l�1�
2 : (4)

The simulation scheme is based on an efficient decom-
position for slightly entangled states and on a protocol to
efficiently update this decomposition when a unitary
transformation is applied to one or two (nearest neighbor)
systems, as described in the next paragraphs.

Efficient decomposition.—State j�i 2 H 
n
d can be

expressed in terms of O�nd�2� parameters by first ex-
panding it in a product basis,

j�i 
Xd
i11

� � �
Xd
in1

ci1���in ji1i 
 � � � 
 jini; (5)

and by then writing the dn complex coefficients ci1���in in
terms of n tensors ��l� and n� 1 vectors ��l�,

ci1i2���in 
X

�1;...;�n�1

��1�i1
�1 �

�1�
�1 �

�2�i2
�1�2�

�2�
�2 �

�3�i3
�2�3 � � ��

�n�in
�n�1 ; (6)

where each � runs from one to �. We refer to [5] for a
detailed explanation on how to obtain this decomposi-
tion, denoted D � f��l�; ��l�g from now on.

Decomposition D has two important precedents.
Except for a number of technical details, it corresponds
to a construction introduced by Fannes, Nachtergaele,
and Werner to study the so-called finitely correlated
states [12]— in turn a generalization of valence bond
states as analyzed by Affleck, Kennedy, Lieb, and
Tasaki [13]—and to Östlund and Rommer’s description
of matrix product states [14] used to analytically study
the fixed points of the DMRG method. Thus, the present
simulation algorithm can be understood as an extension
of these previous works to include time dependence [15].

Vector ��l� in Eq. (6) contains the decreasingly ordered
coefficients ��l�1 � ��l�2 � � � � � ��l�� � 0 of the Schmidt
decomposition [16] of j�i according to the splitting A:B,
where A  �1; . . . ; l�,

j�i 
X�
�1

��l�� j�
�1���l�
� ij���l�1����n�

� i: (7)

In a generic case � grows exponentially with n. However,
in one-dimensional settings it is sometimes possible to
obtain a good approximation to j�i by considering only
the first �� terms in (7), with �� � �,

j�i �

"X��
�1

j��l�� j2
#
��1=2�X��

�1

��l�� j�
�1���l�
� ij���l�1����n�

� i:

(8)

This is due to the following remarkable facts involving
the ground state j�gri and low energy excitations j��k�i of
040502-2
a sufficiently regular, one-dimensional Hamiltonian Hn
as in Eq. (4) [17].

Observation 1: Numerical analysis shows that the
Schmidt coefficients ��l�� of the ground state j�gri of Hn
decay (roughly) exponentially with �:

��l�� � exp��K��; K > 0: (9)

Observation 2: Numerical analysis shows that during
a low-energy evolution, as given by vector j�ti P
kck�t�j��k�i, the Schmidt coefficients ��l�� �t� also decay

(roughly) exponentially with �.
The first observation is at the root of the success of the

DMRG in one dimension [7,18]. The second observation
implies that, in certain one-dimensional problems, a good
approximation to j�ti can be obtained by keeping only a
small number �� of terms in its Schmidt decomposition,
leading to an efficient time-dependent decomposition Dt.

Simulation protocol.—Our aim is to simulate the evo-
lution of the n systems, initially in state j�0i, for a time T
according to the Hamiltonian Hn of Eq. (4). We next
sketch (i) how to construct the initial decomposition
D0 for state j�0i and (ii) how to update the decomposi-
tion Dt of the time-evolved state j�ti for increasing
values of a discretized time t 2 f�; 2�; . . . ; Tg, �=T � 1.

(i) Initialization: When j�0i is related to the ground
state j�gri of Hamiltonian Hn by a sufficiently local
transformation Q [19],

j�0i  Qj�gri; (10)

D0 can be obtained from decomposition Dgr for j�gri
by simulating the action of Q on j�gri. In turn, Dgr can
be obtained through one of the following three methods:
(i1) by extracting it from the solution of the DMRG
method; (i2) by considering any product state,

j�
i � j �1�i 
 � � � 
 j �n�i; h�
j�gri � 0 (11)

[for which D is trivial] and by using the present scheme
to simulate an evolution in imaginary time ! according
to Hn,

j�gri  lim
!!1

exp��Hn!�j�
i

k exp��Hn!�j�
ik
; (12)

or (i3) by simulating an adiabatic evolution from some
product state j�0


i to j�0i through a time-dependent
Hamiltonian that smoothly interpolates between a local
Hamiltonian H0

n such that it has j�0

i as its ground state

and Hamiltonian Hn. Thus, methods (i2) and (i3) rely on
simulating a Hamiltonian evolution (see below) from a
product state and constitute two alternatives to the
DMRG scheme [15].

(ii) Evolution: For simplicity, we assume that Hn does
not depend on time [20]. After a time interval T, the
evolved state j�Ti is given by

j�Ti  exp��iHnT�j�0i: (13)

It is convenient to decompose Hn as Hn  F�G,
040502-2
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FIG. 1 (color online). Propagation of a spin wave in the
ferromagnetic chain (24) with n  30 spins, B  J  1,
T  25, and �  0:005. The eigenvalues p�  j��15�� j2, � 
1; . . . ; 17, of the reduced density matrix �A for half a chain [see
Eq. (7)] are plotted as a function of time (thin, irregular,
rapidly oscillating lines). Notice the exponential decay of p�
in � for any fixed value of t=J, a seemingly common feature of
low-energy dynamics in sufficiently regular, but otherwise
arbitrary local models in one dimension. The time scale is
such that the spin wave, originating at the left end of the open
chain [see state j�0i after Eq. (24)] travels along the open
chain 7 times, bouncing backward each time it reaches one of
the extremes of the chain. The figure shows the error fidelity
��t� corresponding to keeping all 17 terms in (7) in an order
p  2 Trotter expansion. Notice that, as predicted by Eq. (22),
��t� grows quadratically in the simulated time. Errors �0�t� and
�00�t� correspond to keeping ��  12 and ��  8 terms in
Eq. (8). Truncation errors are of the order of the neglected
eigenvalues p�.
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F �
X
even l

F�l� �
X
even l

�K�l�
1 � K�l;l�1�

2 �; (14)

G �
X
odd l

G�l� �
X
odd l

�K�l�
1 � K�l;l�1�

2 �; (15)

where �F�l�; F�l0��  0 (�G�l�; G�l0��  0) for even (odd) l; l0,
but possibly �F;G� � 0. For a small � > 0, the Trotter
expansion of order p for exp��iHnT� reads [21]

e�i�F�G�T  �e�i�F�G���T=� � �fp�UF�;UG���T=�; (16)

where UF� � e�iF�, UG� � e�iG�, and where f1�x; y� 
xy, f2�x; y�  x1=2yx1=2 for first and second order expan-
sions (see [21] for p  3; 4). Equation (16) approximates
the evolution operator exp��iHnT� by a product of
O�T=�� n-body transformations UF� and UG�, which in
turn can be expressed as a product of two-body gates V�l�

2
and W�l�

2 :

UF� 
Y
even l

V�l�
2 ; V�l�

2 � e�iF
�l�� even l; (17)

UG� 
Y
odd l

W�l�
2 ; W�l�

2 � e�iG
�l�� odd l: (18)

The simulation of the time evolution (13) is then accom-
plished by iteratively applying gates UF� and UG� to j�0i
a number O�T=�� of times, and by updating decomposi-
tion D at each step. If j ~��ti denotes the approximate
evolved state at time t, then we have

j ~��t��i  fp�UF�;UG��j ~��ti; (19)

where fp�UF�;UG�� consists of a product of O�n� two-
body gates V�l�

2 andW�l�
2 , and where we use lemma 2 in [5]

to update D after each of these gates.
Errors and computational cost.—The main source of

errors in the scheme are the truncation (8) and the Trotter
expansion (16). We use the fidelity error

��t� � 1� jh�tj ~��tij
2 (20)

to measure how similar the simulated j ~��ti and the exact
j�ti are. The truncation error �1 incurred in replacing (7)
with (8) reads

�1 
X�

����1

���l�� �2: (21)

Truncation errors accumulate additively with time during
the simulation of a unitary evolution. On the other hand,
the order-pTrotter expansion neglects corrections �2 that
scale as [22]

�2 � �
2pT2: (22)

A straightforward generalization of lemma 2 in [5] im-
plies that updating D after a two-body gate requires
O�d3�3� basic operations [and O�d2�2� memory space].
GatesUF� and UG� are applied O�T=�� times and each of
them decomposes into about n two-body gates. Therefore
O�n�d��3T=�� operations are required to apply (16) on
040502-3
j�0i. If no truncation takes place, so that the error � is due
only to the Trotter expansion, it follows from (22) that the
number of basic operations or computational time Tc
scales as

Tc � n�d��3
�
T1�p

�1=2

�
1=p
: (23)

Example.—The numerical scheme has been tested ex-
tensively using MATLAB code in a Pentium IVat 1.2 GHz
both to find an approximation to the ground state j�gri of
a number of Hamiltonians Hn of the form (4) [23] and to
simulate time evolutions of local perturbations of j�gri.
Results addressing specific one-dimensional settings of
interest will be presented elsewhere. Figure 1 illustrates
with a simple example the performance of the method by
comparing an exact time evolution and the corresponding
simulation. It considers a spin 1=2 ferromagnetic chain,

Hn  �B
Xn
l1

+�l�
z � J

Xn�1

l1

~++�l� � ~++�l�1�; (24)

for which the ground state is the product state j�gri 
j0i
n and, most conveniently, the exact time evolution of
040502-3
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the state j�0i  j1i
2 
 j0i
n�2 can be computed effi-
ciently, since the dynamics are confined to a subspace
ofH 
n

2 of dimension n�n� 1�=2. In addition,� in Eq. (7)
is at most n=2� 2. Thus, for this system we can compare
the exact solution j�Ti in (13) with the approximation
j ~��Ti obtained through simulation. When ��  n=2� 2,
also a confirmation of (23) can be obtained for different
values of n, T, and �.

Discussion.—In this Letter, we have shown how to
efficiently simulate low energy dynamics in one-
dimensional arrays of n quantum systems by using
O�n� parameters. It may at first seem difficult to reconcile
this result with the fact that O� exp�n�� parameters are
required to describe a generic state of n systems.
However, the locality of the interactions and the (one-
dimensional) geometry of the problem make the
HamiltonianHn highly nongeneric. It is thus conceivable
that, correspondingly, the dynamics generated by Hn are
constrained to occur in (or can be well approximated by
states from) a submanifold of H 
n

d with remarkably
small dimension.

Further generalizations to Hamiltonians with long-
range interactions, to momentum space, to bosonic and
fermionic systems, and a specific scheme to address criti-
cal systems will be presented elsewhere. These results
have also been generalized to slightly correlated mixed-
state dynamics, and, in particular, to finite temperature
quantum many-body dynamics in one dimension.
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