26 research outputs found

    Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos

    Get PDF
    peer-reviewedHuman mutations in the planar cell polarity component VANGL2 are associated with the neural tube defect spina bifida. Homozygous Vangl2 mutation in mice prevents initiation of neural tube closure, precluding analysis of its subsequent roles in neurulation. Spinal neurulation involves rostral-to-caudal ‘zippering’ until completion of closure is imminent, when a caudal-to-rostral closure point, ‘Closure 5’, arises at the caudal-most extremity of the posterior neuropore (PNP). Here, we used Grhl3Cre to delete Vangl2 in the surface ectoderm (SE) throughout neurulation and in an increasing proportion of PNP neuroepithelial cells at late neurulation stages. This deletion impaired PNP closure after the ∼25-somite stage and resulted in caudal spina bifida in 67% of Grhl3Cre/+Vangl2Fl/Fl embryos. In the dorsal SE, Vangl2 deletion diminished rostrocaudal cell body orientation, but not directional polarisation of cell divisions. In the PNP, Vangl2 disruption diminished mediolateral polarisation of apical neuroepithelial F-actin profiles and resulted in eversion of the caudal PNP. This eversion prevented elevation of the caudal PNP neural folds, which in control embryos is associated with formation of Closure 5 around the 25-somite stage. Closure 5 formation in control embryos is associated with a reduction in mechanical stress withstood at the main zippering point, as inferred from the magnitude of neural fold separation following zippering point laser ablation. This stress accommodation did not happen in Vangl2-disrupted embryos. Thus, disruption of Vangl2-dependent planar-polarised processes in the PNP neuroepithelium and SE preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure

    The timing of auditory sensory deficits in Norrie disease has implications for therapeutic intervention

    Get PDF
    Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease

    Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia

    Get PDF
    Specific mutations in the human gene encoding the Wiskott-Aldrich syndrome protein (WASp) that compromise normal auto-inhibition of WASp result in unregulated activation of the actin-related protein 2/3 complex and increased actin polymerizing activity. These activating mutations are associated with an X-linked form of neutropenia with an intrinsic failure of myelopoiesis and an increase in the incidence of cytogenetic abnormalities. To study the underlying mechanisms, active mutant WASpI294T was expressed by gene transfer. This caused enhanced and delocalized actin polymerization throughout the cell, decreased proliferation, and increased apoptosis. Cells became binucleated, suggesting a failure of cytokinesis, and micronuclei were formed, indicative of genomic instability. Live cell imaging demonstrated a delay in mitosis from prometaphase to anaphase and confirmed that multinucleation was a result of aborted cytokinesis. During mitosis, filamentous actin was abnormally localized around the spindle and chromosomes throughout their alignment and separation, and it accumulated within the cleavage furrow around the spindle midzone. These findings reveal a novel mechanism for inhibition of myelopoiesis through defective mitosis and cytokinesis due to hyperactivation and mislocalization of actin polymerization

    Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1

    Get PDF
    The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation

    Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans

    Get PDF
    It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized

    Decreased Neutrophil Apoptosis in Quiescent ANCA-Associated Systemic Vasculitis

    Get PDF
    Background: ANCA-Associated Systemic Vasculitis (AASV) is characterized by leukocytoclasis, accumulation of unscavenged apoptotic and necrotic neutrophils in perivascular tissues. Dysregulation of neutrophil cell death may contribute directly to the pathogenesis of AASV. less thanbrgreater than less thanbrgreater thanMethods: Neutrophils from Healthy Blood Donors (HBD), patients with AASV most in complete remission, Polycythemia Vera (PV), Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and renal transplant recipients (TP) were incubated in vitro, and the rate of spontaneous apoptosis was measured by FACS. Plasma levels of cytokines and sFAS were measured with cytometric bead array and ELISA. Expression of pro/anti-apoptotic factors, transcription factors C/EBP-alpha, C/EBP-beta and PU.1 and inhibitors of survival/JAK2-pathway were measured by real-time-PCR. less thanbrgreater than less thanbrgreater thanResults: AASV, PV and RA neutrophils had a significantly lower rate of apoptosis compared to HBD neutrophils (AASV 50 +/- 14% vs. HBD 64 +/- 11%, p andlt; 0.0001). In RA but not in AASV and PV, low apoptosis rate correlated with increased plasma levels of GM-CSF and high mRNA levels of anti-apoptotic factors Bcl-2A1 and Mcl-1. AASV patients had normal levels of G-CSF, GM-CSF and IL-3. Both C/EBP-alpha, C/EBP-beta were significantly higher in neutrophils from AASV patients than HBD. Levels of sFAS were significantly higher in AASV compared to HBD. less thanbrgreater than less thanbrgreater thanConclusion: Neutrophil apoptosis rates in vitro are decreased in AASV, RA and PV but mechanisms seem to differ. Increased mRNA levels of granulopoiesis-associated transcription factors and increased levels of sFAS in plasma were observed in AASV. Additional studies are required to define the mechanisms behind the decreased apoptosis rates, and possible connections with accumulation of dying neutrophils in regions of vascular lesions in AASV patients.Funding Agencies|Swedish Research Council|71X-15152|Crafoord Foundation||</p
    corecore