11 research outputs found

    The Leu22Pro tumor-associated variant of DNA polymerase beta is dRP lyase deficient

    Get PDF
    Approximately 30% of human tumors characterized to date express DNA polymerase beta (pol Ī²) variant proteins. Two of the polymerase beta cancer-associated variants are sequence-specific mutators, and one of them binds to DNA but has no polymerase activity. The Leu22Pro (L22P) DNA polymerase beta variant was identified in a gastric carcinoma. Leu22 resides within the 8 kDa amino terminal domain of DNA polymerase beta, which exhibits dRP lyase activity. This domain catalyzes the removal of deoxyribose phosphate during short patch base excision repair. We show that this cancer-associated variant has very little dRP lyase activity but retains its polymerase activity. Although residue 22 has no direct contact with the DNA, we report here that the L22P variant has reduced DNA-binding affinity. The L22P variant protein is deficient in base excision repair. Molecular dynamics calculations suggest that alteration of Leu22 to Pro changes the local packing, the loop connecting helices 1 and 2 and the overall juxtaposition of the helices within the N-terminal domain. This in turn affects the shape of the binding pocket that is required for efficient dRP lyase catalysis

    The Leu22Pro tumor-associated variant of DNA

    No full text
    polymerase beta is dRP lyase deficien

    The E295K DNA Polymerase Beta Gastric Cancer-Associated Variant Interferes with Base Excision Repair and Induces Cellular Transformationā–æ ā€”

    No full text
    Approximately 30% of human tumors examined for mutations in polymerase beta (pol Ī²) appear to express pol Ī² variant proteins (D. Starcevic, S. Dalal, and J. B. Sweasy, Cell Cycle 3:998-1001, 2004). Many of these variants result from a single amino acid substitution. We have previously shown that the K289M and I260M colon and prostate cancer variants, respectively, induce cellular transformation most likely due to sequence-specific mutator activity (S. Dalal et al., Biochemistry 44:15664-15673, 2005; T. Lang et al., Proc. Natl. Acad. Sci. USA 101:6074-6079, 2004; J. B. Sweasy et al., Proc. Natl. Acad. Sci. USA 102:14350-14355, 2005). In the work described here, we show that the E295K gastric carcinoma pol Ī² variant acts in a dominant-negative manner by interfering with base excision repair. This leads to an increase in sister chromatid exchanges. Expression of the E295K variant also induces cellular transformation. Our data suggest that unfilled gaps are channeled into a homology-directed repair pathway that could lead to genomic instability. The results indicate that base excision repair is critical for maintaining genome stability and could therefore be a tumor suppressor mechanism

    Y265C DNA Polymerase Beta Knockin Mice Survive Past Birth and Accumulate Base Excision Repair Intermediate Substrates

    No full text
    DNA is susceptible to damage by a wide variety of chemical agents that are generated either as byproducts of cellular metabolism or exposure to man-made and harmful environments. Therefore, to maintain genomic integrity, having reliable DNA repair systems is important. DNA polymeraseĪ²is known to be a key player in the base excision repair pathway, and mice devoid of DNA polymerase beta do not live beyond a few hours after birth. In this study, we characterized mice harboring an impaired polĪ²variant. This Y265CpolĪ² variant exhibits slow DNA polymerase activity but WT lyase activity and has been shown to be a mutator polymerase. Mice expressing Y265C polĪ² are born at normal Mendelian ratios. However, they are small, and 60% die within a few hours after birth. Slow proliferation and significantly increased levels of cell death are observed in many organs of the E14 homozygous embryos compared with WT littermates. Mouse embryo fibroblasts prepared from the Y265C polĪ² embryos proliferate at a rate slower than WT cells and exhibit a gap-filling deficiency during base ex-cision repair. As a result of this, chromosomal aberrations and single- and double-strand breaks are present at significantly higher levels in the homozygous mutant versus WT mouse embryo fibroblasts. This is study in mice is unique in that two enzymatic activities of polĪ² have been separated; the data clearly demonstrate that the DNA polymerase activity of polĪ² is essential for survival and genome stability

    Lupus antibody-based cancer therapy [Conference Abstract]

    No full text
    A subset of autoantibodies produced by patients with systemic lupus erythematosus (SLE) penetrates into cell nuclei and binds DNA, and we believe that such antibodies may have applications in cancer therapy. We have discovered that the cell-penetrating, nuclear-localizing anti-DNA lupus antibody 3E10 inhibits key steps in DNA single- and double-strand break repair and has potential for development as a targeted therapy for tumors harboring deficiencies in DNA repair. 3E10 preferentially binds DNA substrates with free single-strand tails and interferes with both base excision repair and homology-directed repair (HDR) in vitro, and HDR efficiency is reduced in cells treated with 3E10 as measured in the chromosome-based DR-GFP fluorescent reporter assay. The binding of 3E10 to DNA can be directly visualized under electron microscopy (EM), and EM studies confirmed that 3E10 interferes with RAD51 filament formation, which is a critical step in HDR. The 3E10 single chain variable fragment penetrates into human tumor xenografts in nude mice, and 3E10 sensitizes cancer cells and tumors to DNA-damaging therapy. In addition, 3E10, by itself, is toxic to BRCA2-deficient cancer cells but not to repair-proficient cells, and when combined with a DNA-damaging agent, 3E10 has a very large cytotoxic effect on BRCA2-deficient cancer cells. The synthetically lethal effect of 3E10 on BRCA2-deficient cancer cells is consistent with our finding that 3E10 inhibits DNA repair, and it suggests that 3E10 has potential as a targeted therapy for tumors harboring deficiencies in DNA repair, such as certain breast, ovarian, and prostate cancers. Of note, patients with SLE have lower than expected incidence rates of breast, ovarian, and prostate cancers, and it is tempting to speculate that the circulating cell-penetrating anti-DNA autoantibodies provide patients with SLE some protection against the development of DNA repair-deficient tumors. In summary, our work with the 3E10 antibody has provided proof of principle for the development of a lupus antibody as a cancer therapy and opened up new avenues for exploration into the biology of lupus antibodies

    Abstract 4319: Lupus antibody-based cancer therapy

    No full text
    A subset of autoantibodies produced by patients with systemic lupus erythematosus (SLE) penetrates into cell nuclei and binds DNA, and we believe that such antibodies may have applications in cancer therapy. We have discovered that the cell-penetrating, nuclear-localizing anti-DNA lupus antibody 3E10 inhibits key steps in DNA single- and double-strand break repair and has potential for development as a targeted therapy for tumors harboring deficiencies in DNA repair. 3E10 preferentially binds DNA substrates with free single-strand tails and interferes with both base excision repair and homology-directed repair (HDR) in vitro, and HDR efficiency is reduced in cells treated with 3E10 as measured in the chromosome-based DR-GFP fluorescent reporter assay. The binding of 3E10 to DNA can be directly visualized under electron microscopy (EM), and EM studies confirmed that 3E10 interferes with RAD51 filament formation, which is a critical step in HDR. The 3E10 single chain variable fragment penetrates into human tumor xenografts in nude mice, and 3E10 sensitizes cancer cells and tumors to DNA-damaging therapy. In addition, 3E10, by itself, is toxic to BRCA2-deficient cancer cells but not to repair-proficient cells, and when combined with a DNA-damaging agent, 3E10 has a very large cytotoxic effect on BRCA2-deficient cancer cells. The synthetically lethal effect of 3E10 on BRCA2-deficient cancer cells is consistent with our finding that 3E10 inhibits DNA repair, and it suggests that 3E10 has potential as a targeted therapy for tumors harboring deficiencies in DNA repair, such as certain breast, ovarian, and prostate cancers. Of note, patients with SLE have lower than expected incidence rates of breast, ovarian, and prostate cancers, and it is tempting to speculate that the circulating cell-penetrating anti-DNA autoantibodies provide patients with SLE some protection against the development of DNA repair-deficient tumors. In summary, our work with the 3E10 antibody has provided proof of principle for the development of a lupus antibody as a cancer therapy and opened up new avenues for exploration into the biology of lupus antibodies
    corecore