33 research outputs found

    West Nile virus spread in Europe: phylogeographic pattern analysis and key drivers

    Get PDF
    BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities.METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time.FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways.CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.</p

    PAPILLOMAVIRUS IN HEALTHY SKIN AND MUCOSA OF WILD RUMINANTS IN THE ITALIAN ALPS

    No full text
    We investigated healthy skin and mucosal specimens of wild ruminants in the Italian Alps. We identified bovine papillomavirus (BPV)-2 DNA in the healthy skin of wild ruminants and documented coinfection of BPV-1 and Cervus elaphus papillomavirus (CePV)-1 in a healthy red deer (Cervus elaphus). We also demonstrated cross-infections of BPVs of the genus Xipapillomavirus, both as single virus infection and also in association with Deltapapillomavirus types 1 and 2, confirming that host tropism of papillomaviruses is not as species-speci\ufb01c as previously thought. Our results suggest that subclinical infections could be linked to the presence of domestic ruminants sharing the same habitat with wild species and that the wildlife may act as a reservoir for papillomaviruses affecting domestic species

    Molecular Survey on A, B, C and New Avian Metapneumovirus (aMPV) Subtypes in Wild Birds of Northern-Central Italy

    Get PDF
    Recent insights into the genetic and antigenic variability of avian metapneumovirus (aMPV), including the discovery of two new subtypes, have renewed interest in this virus. aMPV causes a well-known respiratory disease in poultry. Domestic species show different susceptibility to aMPV subtypes, whereas sporadic detections in wild birds have revealed links between epidemiology and migration routes. To explore the epidemiology of aMPV in wild species, a molecular survey was conducted on samples that were collected from wild birds during avian influenza surveillance activity in Italy. The samples were screened in pools by multiplex real time RT-PCR assays in order to detect and differentiate subtypes A, B, C, and those that have been newly identified. All the birds were negative, except for a mallard (Anas platyrhynchos) that was positive for aMPV subtype C (sampled in Padua, in the Veneto region, in 2018). The sequencing of partial M and full G genes placed the strain in an intermediate position between European and Chinese clusters. The absence of subtypes A and B supports the negligible role of wild birds, whereas subtype C detection follows previous serological and molecular identifications in Italy. Subtype C circulation in domestic and wild populations emphasizes the importance of molecular test development and adoption to allow the prompt detection of this likely emerging subtype

    Epidemiological and molecular assessment of a Rubella outbreak in North-Eastern Italy

    No full text
    International audienceFrom January to June 2008, a rubella outbreak involving 111 laboratory confirmed cases occurred in the Friuli Venezia Giulia (FVG) region of North-Eastern Italy. The outbreak occurred initially in two residential homes for young adults disabled mentally and physically. Subsequently, the epidemic spread to the general population. Young adult cohorts were mostly affected and the mean age of the patients was 26.8 years; the majority of cases were male (73.8%), with a mean age of 26.6 years in males and 27.4 in females. Three pregnant women had a primary infection and two had their pregnancies terminated. Genotyping of sixteen isolates showed the circulation of RUBV 2B, a genotype originating from Asia and South Africa and now present in Europe. In addition, molecular analysis revealed a well defined space-temporal spread of two viruses showing distinct sequences. A seroepidemiological survey carried out in a city within the same geographical area showed that the proportion of women of childbearing age still susceptible to rubella virus was 5.5%, fairly close to the figure (less than 5%) expected by 2010

    Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients

    No full text
    SARS-CoV-2 induces a spectrum of clinical conditions ranging from asymptomatic infection to life threatening severe disease. Host microRNAs have been involved in the cytokine storm driven by SARS-CoV-2 infection and proposed as candidate biomarkers for COVID-19

    Early start of seasonal transmission and co-circulation of West Nile virus lineage 2 and a newly introduced lineage 1 strain, northern Italy, June 2022

    No full text
    In spring 2022, Europe faced an unprecedented heat -wave, increasing the risk of West Nile virus (WNV) out-breaks. As early as 7 June 2022, WNV was detected in Culex mosquitoes in northern Italy, and -in the following days -in two blood donors, a patient with encephalitis, wild birds and additional mosquito pools. Genome sequencing demonstrated co-circulation of WNV lineage 2 and a newly introduced WNV lineage 1, which was discovered in the region in 2021

    Rapid spread of a new West Nile virus lineage 1 associated with increased risk of neuroinvasive disease during a large outbreak in northern Italy, 2022: One Health analysis

    No full text
    A new strain of WNV lineage 1 (WNV - 1) emerged in the Veneto Region, northern Italy, in 2021, eight years after the last outbreak of WNV - 1 in Italy. The virus, which co-circulates with WNV-2, has become endemic in the Region, where, in 2022, most human cases of neuroinvasive disease (WNND) reported in Europe have occurred

    West Nile virus spread in Europe : Phylogeographic pattern analysis and key drivers

    No full text
    Background West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. Methods We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM"approach was used to identify how changes in environments would predict viral genetic diversity variations over time. Findings Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV- 2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. Conclusion Our results suggest that-in addition to ecological conditions favouring bird- and mosquitopresence- agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds

    West Nile virus spread in Europe:Phylogeographic pattern analysis and key drivers

    No full text
    Background West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. MethodsWe mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM"approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FindingsAmong the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV- 2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. ConclusionOur results suggest that-in addition to ecological conditions favouring bird- and mosquitopresence- agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.</p
    corecore