146 research outputs found

    Enhanced performance of longitudinally post-tensioned long-span LVL beams

    Get PDF
    The scope of this paper is to highlight the advantages of using longitudinally post-tensioning for long-span timber beams compared to traditional glulam or LVL solutions. The analysis is limited to serviceability limit states for gravity loads. An analtycal iterative procedure which takes into account tendon elongation within beam deflecting has been implemented and validated through experimental tests carried out at the University of Canterbury.In particular, two different static configurations have been studied and different tendon profile configurations (straight and draped) internal and external to the beam section have been investigated and compared with traditional solid timber beams. The experimental results confirm the enhanced performance in terms of deflections at serviceability limit state of the longitudinally post-tensioned solutions with respect to traditional timber beams, especially if external draped tendons are adopted

    Cosmic ray short burst observed with the Global Muon Detector Network (GMDN) on June 22, 2015

    Get PDF
    We analyze the short cosmic ray intensity increase ("cosmic ray burst": CRB) on June 22, 2015 utilizing a global network of muon detectors and derive the global anisotropy of cosmic ray intensity and the density (i.e. the omnidirectional intensity) with 10-minute time resolution. We find that the CRB was caused by a local density maximum and an enhanced anisotropy of cosmic rays both of which appeared in association with Earth's crossing of the heliospheric current sheet (HCS). This enhanced anisotropy was normal to the HCS and consistent with a diamagnetic drift arising from the spatial gradient of cosmic ray density, which indicates that cosmic rays were drifting along the HCS from the north of Earth. We also find a significant anisotropy along the HCS, lasting a few hours after the HCS crossing, indicating that cosmic rays penetrated into the inner heliosphere along the HCS. Based on the latest geomagnetic field model, we quantitatively evaluate the reduction of the geomagnetic cut-off rigidity and the variation of the asymptotic viewing direction of cosmic rays due to a major geomagnetic storm which occurred during the CRB and conclude that the CRB is not caused by the geomagnetic storm, but by a rapid change in the cosmic ray anisotropy and density outside the magnetosphere.Comment: accepted for the publication in the Astrophysical Journa

    Estimation of the length of interactions in arena game semantics

    Get PDF
    We estimate the maximal length of interactions between strategies in HO/N game semantics, in the spirit of the work by Schwichtenberg and Beckmann for the length of reduction in simply typed lambdacalculus. Because of the operational content of game semantics, the bounds presented here also apply to head linear reduction on lambda-terms and to the execution of programs by abstract machines (PAM/KAM), including in presence of computational effects such as non-determinism or ground type references. The proof proceeds by extracting from the games model a combinatorial rewriting rule on trees of natural numbers, which can then be analyzed independently of game semantics or lambda-calculus.Comment: Foundations of Software Science and Computational Structures 14th International Conference, FOSSACS 2011, Saarbr\"ucken : Germany (2011

    Space Weather Application Using Projected Velocity Asymmetry of Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) originating from regions close to the center of the Sun are likely to be responsible for severe geomagnetic storms. It is important to predict geo-effectiveness of HCMEs using observations when they are still near the Sun. Unfortunately, coronagraphic observations do not provide true speeds of CMEs due to the projection effects. In the present paper, we present a new technique allowing estimate the space speed and approximate source location using projected speeds measured at different position angles for a given HCME (velocity asymmetry). We apply this technique to HCMEs observed during 2001-2002 and find that the improved speeds are better correlated with the travel times of HCMEs to Earth and with the magnitudes ensuing geomagnetic storms.Comment: accepted for [publication in Solar Physic

    Analysing the Complexity of Functional Programs: Higher-Order Meets First-Order

    Get PDF
    International audienceWe show how the complexity of higher-order functional programs can be analysed automatically by applying program transformations to a defunctionalized versions of them, and feeding the result to existing tools for the complexity analysis of first-order term rewrite systems. This is done while carefully analysing complexity preservation and reflection of the employed transformations such that the complexity of the obtained term rewrite system reflects on the complexity of the initial program. Further, we describe suitable strategies for the application of the studied transformations and provide ample experimental data for assessing the viability of our method

    The Fibre Resolved opticAl and Near-ultraviolet Czerny-Turner Imaging Spectropolarimeter (FRANCIS)

    Full text link
    The solar physics community is entering a golden era that is ripe with next-generation ground- and space-based facilities. With ever-increasing resolving power stemming from the newest observational telescopes, it becomes more challenging to obtain (near-)simultaneous measurements at high spatial, temporal and spectral resolutions, while operating at the diffraction limit of these new facilities. Hence, in recent years there has been increased interest in the capabilities integral field units (IFUs) offer towards obtaining the trifecta of high spatial, temporal and spectral resolutions contemporaneously. To date, IFUs developed for solar physics research have focused on mid-optical and infrared measurements. Here, we present an IFU prototype that has been designed for operation within the near-ultraviolet to mid-optical wavelength range, hence providing additional spectral coverage to the instrument suites developed to date. The IFU was constructed as a low-budget proof-of-concept for the upcoming 2m class Indian National Large Solar Telescope and employs circular cross-section fibres to guide light into a Czerny-Turner configuration spectrograph, with the resulting spectra captured using a high quantum efficiency scientific CMOS camera. Mapping of each input fibre allows for the reconstruction of two-dimensional spectral images, with frame rates exceeding 20 per second possible while operating in a non-polarimetric configuration. The science verification data presented here highlights the suitability of fibre-fed IFUs operating at near-ultraviolet wavelengths for solar physics research. Importantly, the successful demonstration of this type of instrument paves the way for further technological developments to make a future variant suitable for upcoming ground-based and space-borne telescope facilities.Comment: 53 pages, 16 figures, accepted for publication by Solar Physic

    Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances

    AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK-GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    Get PDF
    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east-west asymmetry is more prominent in GMDN data responding to similar to 60 GV GCRs than in NM data responding to similar to 10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic-y component of the density gradient, G(y), shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G(z) shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average Gz changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.ArticleASTROPHYSICAL JOURNAL. 825(2):100 (2016)journal articl
    corecore