238 research outputs found

    Esperienze progettuali di edifici per attività natatorie

    Get PDF
    Alla città di Milano manca un centro natatorio di spicco atto ad ospitare eventi sportivi di caratura internazionale. L’articolo affronta il tema della progettazione di edifici per attività natatorie proponendo l’inquadramento di possibili soluzioni progettuali attraverso degli studi eseguiti nell’ambito del corso “Building Technology Studio” al Politecnico di Milano. I progetti sono contestualizzati nell’ambito di un quartiere originariamente pensato per il rapporto con l’acqua, ovvero Porto di Mare, sito alla periferia sud-est di Milano

    Slender precast voided slabs under walking-induced vibration

    Get PDF
    Disturbance/discomfort caused by vibrations, induced by pedestrian walking on slabs in residential/office buildings, is a typical design issue for lightweight slender slabs, including prestressed concrete ones. Precast slabs are typically made with pretensioned members which allow for only partial collaboration in the transverse slab direction, which becomes even less effective when they are dry-assembled without cast-in-situ topping since it relies on the arrangement of mutual mechanical connections only. This study investigates through tests and numerical analyses the response of slender precast long-span slabs made with voided members, dry-assembled with mechanical connections, when subjected to vibrations generated by human activities. A parametric set of dynamic modal and time-history analyses encompassing floor member geometry, connection arrangement, mass, and damping, is carried out. The numerical models are validated against results from an experimental test program carried out on two decks of a prototype precast building. The tests and the numerical models allowed to characterize the fundamental dynamic properties of the slab and its vibrational performance, identifying the most efficient technological solutions among those investigated to mitigate human-induced vibrations

    The (In)Efficiency of interaction

    Get PDF
    Evaluating higher-order functional programs through abstract machines inspired by the geometry of the interaction is known to induce space efficiencies, the price being time performances often poorer than those obtainable with traditional, environment-based, abstract machines. Although families of lambda-terms for which the former is exponentially less efficient than the latter do exist, it is currently unknown how general this phenomenon is, and how far the inefficiencies can go, in the worst case. We answer these questions formulating four different well-known abstract machines inside a common definitional framework, this way being able to give sharp results about the relative time efficiencies. We also prove that non-idempotent intersection type theories are able to precisely reflect the time performances of the interactive abstract machine, this way showing that its time-inefficiency ultimately descends from the presence of higher-order types

    Structural assessment of modular precast 3D cell mid- to high-rise buildings with different connections

    Get PDF
    Precast construction employing modular 3D cells for housing was developed alongside frame and panel buildings since the end of WWII, mainly in Europe. This technology combined with in-situ concreting of wet joints was employed with a certain success throughout Europe up to the ‘80s, after which it became progressively less popular due to the difficulties in handling transportation (both lifting and shipping due to the large cell dimensions) and limited benefits in construction due to the partial prefabrication, framing its modern application in many countries to relatively small-size building components, such as kitchen/bathroom or service blocks. Thanks to the recent innovations of the precast concrete technology (both in production and structural connections), combined with the market evolution, this technology is nowadays experiencing a renovated interest for mid- and high-rise buildings, especially in Asia, where rapid dry or semi-dry assemblage of the cells ensures the full finishing of the units in factory, and the full exploitation of the benefits induced by the prefabrication process. As a matter of fact, the current literature regarding the structural behaviour of buildings employing this technology is lacking from a robust assessment, especially concerning their seismic performance. As a preliminary attempt to fill this gap, this paper presents the results of traditional seismic analysis with response spectrum carried out on a representative large residential building designed having 6, 12, 18 and 24 storeys modelled with shell elements and spring connections, analysing the limit PGAs associated to each typology and commenting the role of different connection devices and the possible design implications

    Experimental tests on shallow foundations of onshore wind turbine towers

    Get PDF
    The current effort towards the progressive switch from carbon-based to renewable energy production is leading to a relevant spreading of both on- and off-shore wind turbine towers. Regarding reinforced concrete shallow foundations of onshore wind turbine steel towers, possible reductions of reinforcement may increase their sustainability, speed of erection, and competitiveness. The article presents the results of an experimental program carried out at Politecnico di Milano concerning both cyclic and monotonic loading, simulating extreme wind conditions on 1:15 scaled models of wind turbine steel towers connected by stud bolt adapters to reinforced concrete shallow foundations embedded in a sandy soil. Three couples of foundation specimens were tested with different reinforcement layouts: (a) similar to current praxis, (b) without shear reinforcement, and (c) without shear reinforcement and with 50% of ordinary steel rebars replaced by steel fibers. Additional vertical loads were added to the small-scale models in order to ensure similarity in terms of stresses. The test results allowed to (i) characterize the mechanical behavior of the foundation element considering soil-structure interaction under both service and ultimate load conditions, (ii) assess the foundation failure mode, (iii) highlight the role of each typology of reinforcing bars forming the cage, and (iv) provide hints for the optimization of these latter

    Analysing the Complexity of Functional Programs: Higher-Order Meets First-Order

    Get PDF
    International audienceWe show how the complexity of higher-order functional programs can be analysed automatically by applying program transformations to a defunctionalized versions of them, and feeding the result to existing tools for the complexity analysis of first-order term rewrite systems. This is done while carefully analysing complexity preservation and reflection of the employed transformations such that the complexity of the obtained term rewrite system reflects on the complexity of the initial program. Further, we describe suitable strategies for the application of the studied transformations and provide ample experimental data for assessing the viability of our method

    Prediction of peak-Dst from halo CMEmagnetic cloud-speed observations”,

    Get PDF
    Abstract From the analysis of di erent sets of magnetic clouds and focusing on the most probable value found for the peak amplitude of their negative Bz ÿelds, we present an estimate for the peak intensity of the associated geomagnetic storms (peak Dst). Since the key parameter for this prediction scheme turns out to be the peak amplitude of the solar wind speed, we extend this prediction to halo CME events observed near the Sun and associated with the magnetic clouds. Thus, a prediction scheme for peak Dst, based on halo CME-expansion speed observation near the Sun and associated with magnetic clouds, is suggested for the ÿrst time. Furthermore, the relationship between the cloud's total magnetic ÿeld and its Bs component, empirically found for the two sets of the studied clouds, is consistently supported by the results obtained from a numerical study of magnetic clouds

    Environmental Bisimulations for Probabilistic Higher-Order Languages

    Get PDF
    International audienceEnvironmental bisimulations for probabilistic higher-order languages are studied. In contrast with applicative bisimulations, environmental bisimulations are known to be more robust and do not require sophisticated techniques such as Howe's in the proofs of congruence. As representative calculi, call-by-name and call-by-value λ-calculus, and a (call-by-value) λ-calculus extended with references (i.e., a store) are considered. In each case full abstraction results are derived for probabilistic environmental similarity and bisimilarity with respect to contextual preorder and contextual equivalence, respectively. Some possible enhancements of the (bi)simulations, as 'up-to techniques', are also presented. Probabilities force a number of modifications to the definition of environmental bisimulations in non-probabilistic languages. Some of these modifications are specific to probabilities, others may be seen as general refinements of environmental bisimulations, applicable also to non-probabilistic languages. Several examples are presented, to illustrate the modifications and the differences
    corecore