1,503 research outputs found

    Carnian (Late Triassic) C-isotope excursions, environmental changes, and biotic turnover: a global perturbation of the Earth's surface system

    Get PDF
    Here we present the second part of the special thematic issue on the Carnian Pluvial Episode (CPE). In this issue, two works on terrestrial sedimentological and floral changes linked to the CPE, and new carbon isotope records from Oman and China are presented. The papers published in this issue complement those contained in volume 175 issue 6; they altogether give an almost complete vision of the state-of-the-art about the CPE, including the many conundrums

    High-order density-matrix perturbation theory

    Full text link
    We present a simple formalism for the calculation of the derivatives of the electronic density matrix at any order, within density functional theory. Our approach, contrary to previous ones, is not based on the perturbative expansion of the Kohn-Sham wavefunctions. It has the following advantages: (i) it allows a simple derivation for the expression for the high order derivatives of the density matrix; (ii) in extended insulators, the treatment of uniform-electric-field perturbations and of the polarization derivatives is straightforward.Comment: 4 page

    First-principles study of lattice instabilities in the ferromagnetic martensite Ni2_2MnGa

    Full text link
    The phonon dispersion relations and elastic constants for ferromagnetic Ni2_2MnGa in the cubic and tetragonally distorted Heusler structures are computed using density-functional and density-functional perturbation theory within the spin-polarized generalized-gradient approximation. For 0.9<c/a<1.060.9<c/a<1.06, the TA2_2 tranverse acoustic branch along [110][110] and symmetry-related directions displays a dynamical instability at a wavevector that depends on c/ac/a. Through examination of the Fermi-surface nesting and electron-phonon coupling, this is identified as a Kohn anomaly. In the parent cubic phase the computed tetragonal shear elastic constant, C^\prime=(C11_{11}-C12_{12})/2, is close to zero, indicating a marginal elastic instability towards a uniform tetragonal distortion. We conclude that the cubic Heusler structure is unstable against a family of energy-lowering distortions produced by the coupling between a uniform tetragonal distortion and the corresponding [110][110] modulation. The computed relation between the c/ac/a ratio and the modulation wavevector is in excellent agreement with structural data on the premartensitic (c/ac/a = 1) and martensitic (c/ac/a = 0.94) phases of Ni2_2MnGa.Comment: submitted to Phys. Rev.

    A First-Principles Approach to Insulators in Finite Electric Fields

    Full text link
    We describe a method for computing the response of an insulator to a static, homogeneous electric field. It consists of iteratively minimizing an electric enthalpy functional expressed in terms of occupied Bloch-like states on a uniform grid of k points. The functional has equivalent local minima below a critical field E_c that depends inversely on the density of k points; the disappearance of the minima at E_c signals the onset of Zener breakdown. We illustrate the procedure by computing the piezoelectric and nonlinear dielectric susceptibility tensors of III-V semiconductors.Comment: 4 pages, with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/is_ef/index.htm

    Spontaneous polarization and piezoelectric constants of III-V nitrides

    Full text link
    The spontaneous polarization, dynamical Born charges, and piezoelectric constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using the Berry phase approach to polarization in solids. The piezoelectric constants are found to be up 10 times larger than in conventional III-V's and II-VI's, and comparable to those of ZnO. Further properties at variance with those of conventional III-V compounds are the sign of the piezoelectric constants (positive as in II-VI's) and the very large spontaneous polarization.Comment: RevTeX 4 pages, improved upon revie

    Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins.

    Get PDF
    Stable carbon-isotope geochemistry of fossilized tree resin (amber) potentially could be a very useful tool to infer the composition of past atmospheres. To test the reliability of amber as a proxy for the atmosphere, we studied the variability of modern resin d13C at both local and global scales. An amber d13C curve was then built for the Cretaceous, a period of abundant resin production, and interpreted in light of data from modern resins. Our data show that hardening changes the pristine d13C value by causing a 13C-depletion in solid resin when compared to fresh liquid-viscous resin, probably due to the loss of 13C-enriched volatiles. Modern resin d13C values vary as a function of physiological and environmental parameters in ways that are similar to those described for leaves and wood. Resin d13C varies between plant species and localities, within the same tree and between different plant tissues by up to 6¿, and in general increases with increasing altitudes of the plant-growing site. We show that, as is the case with modern resin, Cretaceous amber d13C has a high variability, generally higher than that of other fossil material. Despite the high natural variability, amber shows a negative 2.5-3¿ d13C trend from the middle Early Cretaceous to the Maastrichtian that parallels published terrestrial d13C records. This trend mirrors changes in the atmospheric d13C calculated from the d13C and d18O of benthic foraminiferal tests, although the magnitude of the shift is larger in plant material than in the atmosphere. Increasing mean annual precipitation and pO2 could have enhanced plant carbon-isotope fractionation during the Late Cretaceous, whereas changing pCO2 levels seem to have had no effect on plant carbon-isotope fractionation. The results of this study suggest that amber is a powerful fossil plant material for palaeoenvironmental and palaeoclimatic reconstructions. Improvement of the resolution of the existing data coupled with more detailed information about botanical source and environmental growing conditions of the fossil plant material will probably allow a more faithful interpretation of amber d13C records and a wider understanding of the composition of the past atmosphere

    Design of a low band gap oxide ferroelectric: Bi6_6Ti4_4O17_{17}

    Full text link
    A strategy for obtaining low band gap oxide ferroelectrics based on charge imbalance is described and illustrated by first principles studies of the hypothetical compound Bi6_6Ti4_4O17_{17}, which is an alternate stacking of the ferroelectric Bi4_4Ti3_3O12_{12}. We find that this compound is ferroelectric, similar to Bi4_4Ti3_3O12_{12} although with a reduced polarization. Importantly, calculations of the electronic structure with the recently developed functional of Tran and Blaha yield a much reduced band gap of 1.83 eV for this material compared to Bi4_4Ti3_3O12_{12}. Therefore, Bi6_6Ti4_4O17_{17} is predicted to be a low band gap ferroelectric material

    Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction

    Get PDF
    The Permian-Triassic mass extinction is widely attributed to the global environmental changes caused by the eruption of the Siberian Traps. However, the precise temporal link between marine and terrestrial crises and volcanism is unclear. Here, we report anomalously high mercury (Hg) concentrations in terrestrial strata from southwestern China, synchronous with Hg anomalies in the marine Permian-Triassic type section. The terrestrial sediments also record increased abundance of fossil charcoal coincident with the onset of a negative carbon isotope excursion and the loss of tropical rainforest vegetation, both of which occurred immediately before the peak of Hg concentrations. The organic carbon isotope data show an ∼5‰–6‰ negative excursion in terrestrial organic matter (bulk organic, cuticles, and charcoal), reflecting change in atmospheric CO2 carbon-isotope composition coincident with enhanced wildfire indicated by increased charcoal. Hg spikes provide a correlative tool between terrestrial and marine records along with carbon isotope trends. These data demonstrate that ecological deterioration occurred in tropical peatlands prior to the main marine mass extinction

    Theoretical investigation of hydrogen storage in metal-intercalated graphitic materials

    Full text link
    We have used first-principles methods to investigate how metal atoms dispersed in the interlayer space of graphitic materials affect their hydrogen-binding properties. We have considered ideal stage-one metal-intercalated graphites of various compositions as representative model systems. Our calculations suggest that alkaline earth metals can significantly enhance the hydrogen storage properties: for example, Be and Mg atoms would act as binding sites of three or four hydrogen molecules, with binding energies per H2_2 in the 0.2--0.7 eV range, as required for applications. We also find that alkali and transition metals are not as effective in enhancing the storage capacity.Comment: 11 pages with 4 figures embedded. More information at http://www.icmab.es/dmmis/leem/jorge
    corecore