16 research outputs found

    Measurements of the K-shell opacity of a solid-density magnesium plasma heated by an X-ray free electron laser

    No full text
    We present measurements of the spectrally-resolved X-rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an X-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell X-rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium (LTE) conditions. The deduced opacities at the peak of the K-α transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations

    Measurements of the K-shell opacity of a solid-density magnesium plasma heated by an X-ray free electron laser

    No full text
    We present measurements of the spectrally-resolved X-rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an X-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell X-rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium (LTE) conditions. The deduced opacities at the peak of the K-α transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations

    Nanosecond X-Ray Photon Correlation Spectroscopy on Magnetic Skyrmions.

    Get PDF
    We report an x-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant x-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond time scales in thin films of multilayered Fe/Gd that exhibit ordered stripe and Skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the Skyrmion phase and near the stripe-Skyrmion boundary. This technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter

    Measurements of continuum lowering in solid-density plasmas created from elements and compounds

    Get PDF
    The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. Here we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. The results have implications for the standard approaches to the equation of state calculations121251sciescopu

    Clocking femtosecond collisional dynamics via resonant X-ray spectroscopy

    No full text
    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, non-equilibrium plasma evolution and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultra-fast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1s ! 2p transition in highly-charged ions within an optically-thin plasma we have measured how off-resonance charge states are populated via collisional processes on femtosecond times scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Non-LTE (local thermodynamic equilibrium) collisional radiative simulations show excellent agreement with the experimental results, and provide new insight on collisional ionization and three-body-recombination processes in the dense plasma regime
    corecore