51 research outputs found

    Rapid marine oxygen variability: Driver of the Late Ordovician Mass Extinction

    Get PDF
    The timing and connections between global cooling, marine redox conditions, and biotic turnover are underconstrained for the Late Ordovician. The second most severe mass extinction occurred at the end of the Ordovician period, resulting in ~85% loss of marine species between two extinction pulses. As the only “Big 5” extinction that occurred during icehouse conditions, this interval is an important modern analog to constrain environmental feedbacks. We present a previously unexplored thallium isotope records from two paleobasins that record global marine redox conditions and document two distinct and rapid excursions suggesting vacillating (de)oxygenation. The strong temporal link between these perturbations and extinctions highlights the possibility that dynamic marine oxygen fluctuations, rather than persistent, stable global anoxia, played a major role in driving the extinction. This evidence for rapid oxygen changes leading to mass extinction has important implications for modern deoxygenation and biodiversity declines

    Controls on Organic Matter Accumulation from an Upper Slope Section on the Early Cambrian Yangtze Platform, South China

    No full text
    The early Cambrian witnessed profound environmental changes and biological evolution in Earth’ history. During this period, organic-rich shales were widely distributed over almost the entire Yangtze Block. However, the dominant factor that drove the significant accumulation of organic matter (OM) remains controversial and is still debated. Here, we analyzed TOC, organic carbon isotopes, iron speciation, major and trace elements for the lower Cambrian Niutitang Formation in the upper slope Meiziwan section, to investigate the dominant factor controlling OM accumulation. High contents of TOC and Baxs reveal an OM-enriched feature of the Niutitang Formation, and the coupled relationship between them suggest a strong production control on OM accumulation at Meiziwan. Meanwhile, negative relationships between TOC and chemical index of alteration (CIA) values as well as Al contents suggest that influence of chemical weathering and terrestrial input on OM accumulation were limited. Fairly low CoEF × MnEF values provide strong evidence that the deposition of organic-rich shales was under the control of oceanic upwelling event. The upwelling event would bring nutrient-rich deep waters into surface water, stimulating phytoplankton bloom and primary productivity in surface water and facilitating OM enrichment. Meanwhile, enhanced accumulation of OM would have promoted subsequent bacterial sulfate reduction, leading to the occurrence of occasional euxinia (evidenced by iron speciation and redox-sensitive trace element data) and promoting preservation of OM. Taken together, our results shed light on the critical role of oceanic upwelling on the marine primary productivity on the earliest Cambrian Yangtze Platform

    Preface

    No full text
    International audienceNot Availabl
    corecore