11 research outputs found

    CQFB and PBP in Diagnosis of Local Gear Fault

    No full text
    The vibration signal of local gear fault is mainly composed of two components. One is the resonant signal and noise signal and the other one is the transient impulse signal including fault information. The quality factors corresponding to the two components are different. Hence, a method to diagnose local gear fault based on composite quality factor basis and parallel basis pursuit is proposed. First, two different quality factors bases are established using wavelet transform of variable quality factors to obtain the decomposition coefficient. Next, the parallel basis pursuit is adopted for the optimization of the decomposition coefficient. With the derived optimal decomposition coefficient, the resonant components with different quality factors can be reconstructed. By discussing the sparsity of signals treated with different quality factors bases, the suitable composite quality factor basis is selected to perform sparse decomposition on the signal. Besides, the obtained resonant component with low quality factor is subject to demodulation analysis, so as to derive the fault information. The feasibility and validity of the algorithm are shown by the results from simulation signal and practical application of local gear faults

    Use of Mutual Information and Transfer Entropy to Assess Interaction between Parasympathetic and Sympathetic Activities of Nervous System from HRV

    No full text
    Obstructive sleep apnea (OSA) is a common sleep disorder that often associates with reduced heart rate variability (HRV) indicating autonomic dysfunction. HRV is mainly composed of high frequency components attributed to parasympathetic activity and low frequency components attributed to sympathetic activity. Although, time domain and frequency domain features of HRV have been used to sleep studies, the complex interaction between nonlinear independent frequency components with OSA is less known. This study included 30 electrocardiogram recordings (20 OSA patient recording and 10 healthy subjects) with apnea or normal label in 1-min segment. All segments were divided into three groups: N-N group (normal segments of normal subjects), P-N group (normal segments of OSA subjects) and P-OSA group (apnea segments of OSA subjects). Frequency domain indices and interaction indices were extracted from segmented RR intervals. Frequency domain indices included nuLF, nuHF, and LF/HF ratio; interaction indices included mutual information (MI) and transfer entropy (TE (H→L) and TE (L→H)). Our results demonstrated that LF/HF ratio was significant higher in P-OSA group than N-N group and P-N group. MI was significantly larger in P-OSA group than P-N group. TE (H→L) and TE (L→H) showed a significant decrease in P-OSA group, compared to P-N group and N-N group. TE (H→L) were significantly negative correlation with LF/HF ratio in P-N group (r = −0.789, p = 0.000) and P-OSA group (r = −0.661, p = 0.002). Our results indicated that MI and TE is powerful tools to evaluate sympathovagal modulation in OSA. Moreover, sympathovagal modulation is more imbalance in OSA patients while suffering from apnea event compared to free event

    A SVM-Based Text Classification System for Knowledge Organization Method of Crop Cultivation

    No full text
    Part 1: Decision Support Systems, Intelligent Systems and Artificial Intelligence ApplicationsInternational audienceThe organization of crop cultivation practices is still far from completion, and Web Resources are not used adequately. This paper proposed a method, based on SVM, to organize the knowledge of crop cultivation practices efficiently from Web Resources. The knowledge organization method of crop cultivation was proposed with Good Agricultural Practices (GAP) in the application of the crop cultivation practices. It is that how to organize the existing crop cultivation knowledge, according to the requirements of crop cultivation practices. It mainly includes a text classification method and a search strategy on the knowledge of crop cultivation. For the text classification method, it used a text classification method based on SVM Decision Tree; for the search strategy, it used a strategy, organized by Ontology and custom knowledge bases. The experiment shows that performance of the proposed text classification method and the knowledge organization method with wheat, is workable and feasible

    Achieving an excellent combination of strength and ductility in a single-phase metastable medium-entropy alloy

    No full text
    The development of robust alloys capable of maintaining high strength and ductility at cryogenic temperatures has been a long-sought goal, particularly for load-bearing applications in extremely low-temperature environments. In this study, we reported a newly developed face-centered-cubic (FCC) metastable (Ni0·3Co0·4Cr0.3)94Mo6 medium-entropy alloy (Mo-MEA) with an excellent synergy of strength and ductility at 77 K, surpassing the toughest equiatomic NiCoCr MEA. Compared to the equiatomic NiCoCr MEA, the Mo-MEA exhibited a substantial increase in yield strength by 68 % (from 407 to 685 MPa) and a decent enhancement of the ultimate tensile strength by 10 % (from 1289 to 1415 MPa), along with a marginal increase in elongation from 75 % to 78.45 %. Electron backscatter diffraction and transmission electron microscopy revealed the activation of multimodal deformation mechanisms, including dislocations, stacking faults, twinning, and FCC-to-hexagonal-close-packed phase transformation, during the tensile deformation at 77 K

    Data_Sheet_2_Soil microbial communities response to different fertilization regimes in young Catalpa bungei plantation.doc

    No full text
    Fertilization is a fundamental aspect of global forest management that enhances forest productivity and drastically affects soil microbial communities. However, few studies have investigated the differences and similarities in the responses of below-ground microbial communities to different fertilization schemes. The effects of fertilization regimes on the composition and diversity of soil fungal and bacterial communities were investigated in a young Catalpa bungei plantation in Shandong Province, Eastern China. Soil microbial communities were assessed undergoing three types of fertilization: (i) no fertilization (CK), (ii) hole fertilization (HF), and (iii) the integration of water and fertilizer (WF). We further analyzed the effects of soil depth (i.e., 0–20 and 20–40 cm) on the structure of soil microbial communities. Our results indicated that the diversity of bacteria (e.g., Chao1 and Shannon indices) reduced undergoing fertilization, and WF had a higher negative impact on bacterial diversity than HF. A lower bacterial diversity was observed in the subsoil compared to the topsoil. In contrast to bacterial diversity, fungal diversity had a slightly increasing trend in the fertilized environments. The primary bacterial function was metabolism, which was independent of fertilization or soil depth. Among fungal functional guilds, symbiotic soil fungi decreased obviously in the fertilized stand, whereas saprotrophic fungi increased slowly. According to the structural equation models (SEM), the diversity and composition of bacterial and fungal communities were jointly regulated by soil nutrients (including N and P contents) directly affected by fertilization and soil layer. These findings could be used to develop management practices in temperate forests and help sustain soil microbial diversity to maintain long-term ecosystem function and services.</p

    Data_Sheet_1_Soil microbial communities response to different fertilization regimes in young Catalpa bungei plantation.doc

    No full text
    Fertilization is a fundamental aspect of global forest management that enhances forest productivity and drastically affects soil microbial communities. However, few studies have investigated the differences and similarities in the responses of below-ground microbial communities to different fertilization schemes. The effects of fertilization regimes on the composition and diversity of soil fungal and bacterial communities were investigated in a young Catalpa bungei plantation in Shandong Province, Eastern China. Soil microbial communities were assessed undergoing three types of fertilization: (i) no fertilization (CK), (ii) hole fertilization (HF), and (iii) the integration of water and fertilizer (WF). We further analyzed the effects of soil depth (i.e., 0–20 and 20–40 cm) on the structure of soil microbial communities. Our results indicated that the diversity of bacteria (e.g., Chao1 and Shannon indices) reduced undergoing fertilization, and WF had a higher negative impact on bacterial diversity than HF. A lower bacterial diversity was observed in the subsoil compared to the topsoil. In contrast to bacterial diversity, fungal diversity had a slightly increasing trend in the fertilized environments. The primary bacterial function was metabolism, which was independent of fertilization or soil depth. Among fungal functional guilds, symbiotic soil fungi decreased obviously in the fertilized stand, whereas saprotrophic fungi increased slowly. According to the structural equation models (SEM), the diversity and composition of bacterial and fungal communities were jointly regulated by soil nutrients (including N and P contents) directly affected by fertilization and soil layer. These findings could be used to develop management practices in temperate forests and help sustain soil microbial diversity to maintain long-term ecosystem function and services.</p

    DataSheet_2_Spatial variations and pools of non-structural carbohydrates in young Catalpa bungei undergoing different fertilization regimes.docx

    No full text
    Despite the importance of non-structural carbohydrates (NSC) for growth and survival in woody plants, we know little about whole-tree NSC storage. Here, Catalpa bungei trees fertilized using different schedules, including water and fertilizer integration, hole application, and no fertilization, were used to measure the spatial variations of sugar, starch, and NSC concentrations in the leaf, branch, stem, bark, and root. By calculating the volume of whole-tree NSC pools and the contribution of distinct organs, we were also able to compare the storage under various fertilization regimes. We found that the spatial distribution patterns of each organ undergoing different fertilization regimes were remarkably similar. Height-related increases in the sugar and NSC concentrations of the leaf and bark were observed. The concentrations of sugar and NSC in the branch did not appear to vary longitudinally or horizontally. The sugar and NSC concentrations in the stem fluctuated with height, first falling and then rising. The coarse root contained larger amounts of NSC components in comparison to fine root. Contrary to no fertilization, fertilization enhanced the distribution ratio of the leaf, branch, and stem NSC pools while decreasing the distribution ratio of the root NSC pool. Particularly, the addition of fertilizer and water significantly increased the biomass of the organs, enhancing the carbon sink of each organ and whole-tree in comparison to other fertilization regimes. Our main goal was to strengthen the empirical groundwork for comprehending the functional significance of NSC allocation and stock variations at the organ-level of C. bungei trees.</p
    corecore