129 research outputs found
Quantum Monte Carlo calculations of nuclei
We report on quantum Monte Carlo calculations of the ground and low-lying
excited states of nuclei using realistic Hamiltonians containing the
Argonne two-nucleon potential alone or with one of several
three-nucleon potentials, including Urbana IX and three of the new Illinois
models. The calculations begin with correlated many-body wave functions that
have an -like core and multiple p-shell nucleons, -coupled to the
appropriate quantum numbers for the state of interest. After
optimization, these variational trial functions are used as input to a Green's
function Monte Carlo calculation of the energy, using a constrained path
algorithm. We find that the Hamiltonians that include Illinois three-nucleon
potentials reproduce ten states in Li, Be, Be, and B with
an rms deviation as little as 900 keV. In particular, we obtain the correct
3 ground state for B, whereas the Argonne alone or with
Urbana IX predicts a 1 ground state. In addition, we calculate isovector
and isotensor energy differences, electromagnetic moments, and one- and
two-body density distributions.Comment: 28 pages, 12 tables, 7 figure
Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas
The regimes of quasi-mono-energetic electron beam generation were
experimentally studied in the sub-relativistic intensity laser plasma
interaction. The observed electron acceleration regime is unfolded with
two-dimensional-particle-in-cell simulations of laser-wakefield generation in
the self-modulation regime.Comment: 10 pages, 5 figure
Measurement of the Gamow-Teller Strength Distribution in 58Co via the 58Ni(t,3He) reaction at 115 MeV/nucleon
Electron capture and beta decay play important roles in the evolution of
pre-supernovae stars and their eventual core collapse. These rates are normally
predicted through shell-model calculations. Experimentally determined strength
distributions from charge-exchange reactions are needed to test modern
shell-model calculations. We report on the measurement of the Gamow-Teller
strength distribution in 58Co from the 58Ni(t,3He) reaction with a secondary
triton beam of an intensity of ~10^6 pps at 115 MeV/nucleon and a resolution of
\~250 keV. Previous measurements with the 58Ni(n,p) and the 58Ni(d,2He)
reactions were inconsistent with each other. Our results support the latter. We
also compare the results to predictions of large-scale shell model calculations
using the KB3G and GXPF1 interactions and investigate the impact of differences
between the various experiments and theories in terms of the weak rates in the
stellar environment. Finally, the systematic uncertainties in the normalization
of the strength distribution extracted from 58Ni(3He,t) are described and turn
out to be non-negligible due to large interferences between the dL=0, dS=1
Gamow-Teller amplitude and the dL=2, dS=1 amplitude.Comment: 14 pages, 8 figure
Do Hadronic Charge Exchange Reactions Measure Electroweak L = 1 Strength?
An eikonal model has been used to assess the relationship between calculated
strengths for first forbidden beta decay and calculated cross sections for
(p,n) charge exchange reactions. It is found that these are proportional for
strong transitions, suggesting that hadronic charge exchange reactions may be
useful in determining the spin-dipole matrix elements for astrophysically
interesting leptonic transitions.Comment: 14 pages, 5 figures, Submitted to Physical Review
Chamber winds : Party music
Adam GorbErik SatieHK Grube
Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos
Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation
energies have been measured via the (3He,t) reaction at 450 MeV and at 0
degrees. For 176Yb, two low-lying states are observed, setting low thresholds
Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from
the measured GT strengths, the simple two-state excitation structure, and the
low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well
suited for a direct measurement of the complete sub-MeV solar electron-neutrino
spectrum (including pp neutrinos) where definitive effects of flavor conversion
are expected
Structure of isobaric analog states in 91Nb populated by the 90Zr(a,t) reaction
Decay via proton emission of isobaric analog states (IAS's) in
was studied using the reaction at =180 MeV.
This study provides information about the damping mechanism of these states.
Decay to the ground state and low-lying phonon states in was
observed. The experimental data are compared with theoretical predictions
wherein the IAS `single-particle' proton escape widths are calculated in a
continuum RPA approach. The branching ratios for decay to the phonon states are
explained using a simple model.Comment: 3 figures. submitted to Phys. Lett.
Soft X-ray harmonic comb from relativistic electron spikes
We demonstrate a new high-order harmonic generation mechanism reaching the
`water window' spectral region in experiments with multi-terawatt femtosecond
lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving
uJ/sr pulses. Harmonics are collectively emitted by an oscillating electron
spike formed at the joint of the boundaries of a cavity and bow wave created by
a relativistically self-focusing laser in underdense plasma. The spike
sharpness and stability are explained by catastrophe theory. The mechanism is
corroborated by particle-in-cell simulations
- …