15 research outputs found
Microsatellite development for the genus Guibourtia (Fabaceae, Caesalpinioideae) reveals diploid and polyploid species
Premise of the study: Nuclear microsatellites (nSSRs) were designed for Guibourtia tessmannii (Fabaceae, Caesalpinioideae), a highly exploited African timber tree, to study population genetic structure and gene flow.
Methods and Results: We developed 16 polymorphic nSSRs from a genomic library tested in three populations of G. tessmannii and two populations of G. coleosperma. These nSSRs display three to 14 alleles per locus (mean 8.94) in G. tessmannii. Cross-amplification tests in nine congeneric species demonstrated that the genus Guibourtia contains diploid and polyploid species. Flow cytometry results combined with nSSR profiles suggest that G. tessmannii is octoploid.
Conclusions: nSSRs revealed that African Guibourtia species include both diploid and polyploid species. These markers will provide information on the mating system, patterns of gene flow, and genetic structure of African Guibourtia species
Assessment of fine scale population genetic diversity and regeneration in Congo basin logged forests
In the Congo Basin most of the light-demanding timber tree species display a deficit of natural regeneration which is a major handicap for sustainable production and certification. Whilst the majority of scientists investigate abiotic and biotic factors explaining that pattern, we hypothesize that tree population density or individual spatial isolation may also affect the tree fitness through inbreeding. In this study, we integrate ecological and genetic approaches to characterize the regeneration potential of a set of priority timber species by (i) estimating pollen dispersal distances at various tree population densities, and (ii) evaluating the impact of increasing spatial isolation on mating characteristics and tree fitness. The ultimate goal is the proposal of minimum population density that prevents inbreeding consequences.
Method
This ongoing study focuses on 10 timber species (Pericopsis elata, Milicia excelsa, Baillonella toxisperma, Entandrophragma cylindricum, E. utile, E. angolense, E. candollei, Afzelia bipindensis, Erythrophleum suaveloens, Terminalia superba). The data collection was carried out in the logging concession granted to Pallisco in Cameroon.
We established two 400-ha plots, where all individuals (DBH > 10 cm) of the target species were inventoried and mapped. A sample of leave or cambium was collected for each of these individuals, as well as for seedlings to characterize patterns of gene flow using genetic tools (nuclear microsatellites). Dispersal agents were identified by direct observations and camera traps. Germination success was characterized in nursery for seeds collected on trees under an increasing isolation gradient.
Results
Main dispersal agents (wind, bat, rodent) and predators (rodent) were identified for all the species. The gene flow and germination data is still being analyzed and the main results will be presented in the poster.
Conclusion
Our data will allow characterizing the reproductive biology of a set of important timber species from the Congo basin. These information will strengthen sustainable forest management and the application of certification by adjusting harvesting norms through the use of scientifically-relevant data. In particular, we will tentatively define a maximum distance to be maintained between two adults to allow a qualitative reproduction
Evolution in African tropical trees displaying ploidy-habitat association : the genus Afzelia (Leguminosae)
Polyploidy has rarely been documented in rain forest trees but it has recently been found in African species of the genus Afzelia (Leguminosae), which is composed of four tetraploid rain forest species and two diploid dry forest species. The genus Afzelia thus provides an opportunity to examine how and when polyploidy and habitat shift occurred in Africa, and whether they are associated. In this study, we combined three plastid markers (psbA, trnL, ndhF), two nuclear markers (ribosomal ITS and the single-copy PEPC E7 gene), plastomes (obtained by High Throughput Sequencing) and morphological traits, with an extensive taxonomic and geographic sampling to explore the evolutionary history of Afzelia. Both nuclear DNA and morphological vegetative characters separated diploid from tetraploid lineages. Although the two African diploid species were well differentiated genetically and morphologically, the relationships among the tetraploid species were not resolved. In contrast to the nuclear markers, plastid markers revealed that one of the diploid species forms a well-supported Glade with the tetraploids, suggesting historical hybridisation, possibly in relation with genome duplication (polyploidization) and habitat shift from dry to rain forests. Molecular dating based on fossil-anchored gene phylogenies indicates that extant Afzelia started diverging c. 14.5 or 20 Ma while extant tetraploid species started diverging c. 7.0 or 9.4 Ma according to plastid and nuclear DNA, respectively. Additional studies of tropical polyploid plants are needed to assess whether the ploidy-habitat association observed in African Afzelia would reflect a role of polyploidization in niche divergence in the tropics
Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region
The biogeographic history of the African rain forests has been contentious. Phylogeography, the study of the geographic distribution of genetic lineages within species, can highlight the signatures of historical events affecting the demography and distribution of species (i.e. population fragmentation or size changes, range expansion/contraction) and, thereby, the ecosystems they belong to. The accumulation of recent data for African rain forests now enables a first biogeographic synthesis for the region. In this review, we explain which phylogeographic patterns are expected under different scenarios of past demographic change, and we give an overview of the patterns detected in African rain forest trees to discuss whether they support alternative hypotheses regarding the history of the African rain forest cover. The major genetic discontinuities in the region support the role of refugia during climatic oscillations, though not necessarily following the classically proposed scenarios. We identify in particular a genetic split between the North and the South of the Lower Guinean region. Finally we provide some perspectives for future study. © 2013 Académie des sciences.Olivier J. Hardy, Céline Born, Katarina Budde, Kasso Daïnou, Gilles Dauby, Jérôme Duminil, Eben-Ezer B.K. Ewédjé, Céline Gomez, Myriam Heuertz, Guillaume K. Koffi, Andrew J. Lowe, Claire Micheneau, Dyana Ndiade-Bourobou, Rosalía Pinẽiro, Valérie Ponce
Speciation slowing down in widespread and long-living tree taxa : insights from the tropical timber tree genus Milicia (Moraceae)
The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically