318 research outputs found

    Infiltrating ductal and lobular breast carcinomas are characterised by different interrelationships among markers related to angiogenesis and hormone dependence

    Get PDF
    To obtain a more integrated understanding of the different breast cancer phenotypes and to investigate whether bio-molecular profiles can distinguish between specific histotypes, we explored the interrelations among several biologic variables indicative of, or related to, hormone dependence, proliferation and apoptosis control, and angiogenesis in ductal and lobular carcinomas, the most common histotypes. Oestrogen and progesterone receptors, tumour proliferative activity, the expression of cyclin A, p16ink4A, p27kip1, p21waf1, p53, bcl-2, and levels of vascular endothelial growth factor and hypoxia-inducible factor-1α (HIF-1α) were evaluated in 190 in ductal and 67 lobular carcinomas. Our findings support the hypothesis that in ductal and lobular carcinomas are two distinct, partially phenotypically unrelated entities, the latter being characterised by the presence of features indicative of differentiation such as oestrogen receptors, low proliferation and lack of p53 expression and associated with low vascular endothelial growth factor content compared to angiogenesis in ductal carcinomas. Conversely, no significant difference was found between lobular carcinomas and in ductal carcinomas considering the frequency distribution of PgR-positive cases, cyclin-dependent kinase inhibitors acting at the G1/S boundary, bcl-2 and HIF-1α protein expression. Although both generally defined as hormone responsive, in ductal and lobular carcinomas are also characterised by biologic patterns in which proteins related to hormone responsiveness, cell-cycle control, apoptosis and angiogenesis were differently associated. This finding suggests the need to refine breast cancer characterisation in order to provide detailed information about individual tumours, or subsets of tumours, that will help in defining optimal treatment approaches

    Potential of the Oxidized Form of the Oleuropein Aglycon to Monitor the Oil Quality Evolution of Commercial Extra-Virgin Olive Oils

    Get PDF
    The quality of commercially available extra-virgin olive oils (VOOs) of different chemical compositions was evaluated as a function of storage (12 months), simulating market storage conditions, to find reliable and early markers of the virgin olive oil (VOOs) quality status in the market. By applying a D-optimal design using the Most Descriptive Compound (MDC) algorithm, 20 virgin olive oils were selected. The initial concentrations of oleic acid, hydrophilic phenols, and a-tocopherol in the 20 VOOs ranged from 58.2 to 80.5%, 186.7 to 1003.2 mg/kg, and 170.7-300.6 mg/kg, respectively. K-270, increment K, (E, E)-2.4-decadienal and (E)-2-decenal, and the oxidative form of the oleuropein aglycon (3,4-DHPEA-EA-OX) reflected the VOO quality status well, with 3,4-DHPEA-EA-OX being the most relevant and quick index for simple monitoring of the "extra-virgin" commercial shelf-life category. Its HPLC-DAD evaluation is easy because of the different wavelength absorbances of the oxidized and non-oxidized form (3,4-DHPEA-EA), respectively, at 347 and 278 nm

    Sodium 4-Carboxymethoxyimino-(4-HPR) a Novel Water-Soluble Derivative of 4-Oxo-4-HPR Endowed with In Vivo Anticancer Activity on Solid Tumors

    Get PDF
    4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR), an active polar metabolite of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR), was shown to exert promising antitumor activity through at least two independent mechanisms of action. Specifically, differently from 4-HPR and other retinoids, 4-oxo-4-HPR targets microtubules and inhibits tubulin polymerization causing mitotic arrest and on the other hand, analogously to the parent drug, it induces apoptosis through the activation of a signaling cascade involving the generation of reactive oxygen species (ROS). However, the potential in vivo use of 4-oxo-4-HPR is impaired by its poor solubility. By chemical modification of 4-oxo-4-HPR, a new class of compounds with improved solubility and in vivo bioavailability was obtained. We demonstrated here that, among them, the most promising molecule, sodium 4-carboxymethoxyimino-(4-HPR), was endowed with in vitro antitumor efficacy and entirely preserved the double mechanism of action of the parent drug in cancer cells of different histotypes. In fact, the retinoid induced the activation of the apoptotic cascade related to the generation of ROS through endoplasmic reticulum stress response and upregulation of phospho c-Jun N-terminal kinases and PLAcental Bone morphogenetic protein, leading to cell death through caspase-3 cleavage. Otherwise, sodium 4-carboxymethoxyimino-(4-HPR) caused a marked mitotic arrest coupled with multipolar spindle formation and tubulin depolymerization. To assess the compound antitumor activity, in vivo experiments were performed in three mouse xenograft models (ovarian and breast cancers and mesothelioma). The in vivo results demonstrated that retinoid administration as single agent significantly increased the survival in ovarian cancer xenografts, induced a statistically significant decrease in tumor growth in breast cancer xenografts, and caused a 30% reduction in tumor growth in a mesothelioma mouse model. Even though further studies investigating sodium 4-carboxymethoxyimino-(4-HPR) toxicity and in vitro and in vivo activities in combination with other drugs are required, the double mechanism of action of the retinoid coupled with its in vivo antitumor efficacy and potential low toxicity suggest a promising therapeutic potential for the compound in different solid tumors

    Clusterin: A potential target for improving response to antiestrogens

    Get PDF
    Antiestrogens represent the first line of therapy in the treatment of estrogen receptor-positive (ER+) breast cancer patients. Unfortunately, up to 40% of patients develop resistance associated with progression and frequently die for metastatic breast cancer. The molecular events leading to pharmacological resistance are not completely understood. We attempted to verify in an experimental model the role of cytoplasmic clusterin (CLU), a cytoprotective protein found to be up-regulated in antiestrogen-resistant patients, following neoadjuvant treatment with toremifene. The role of cytoplasmic clusterin in modulating response to two antiestrogens (toremifene and tamoxifen) was studied in two ER+ anti-estrogen-sensitive cell lines (MCF-7, 734B) and one ER+ antiestrogen-resistant cell line (T47D) using siRNA strategy. Resistant cells were characterised by higher levels of cytoplasmic clusterin than sensitive cells, and antiestrogen treatments up-regulated clusterin levels in both sensitive and resistant cell lines. Treatment with siRNA completely abolished cytoplasmic clusterin expression in all cell lines, but its down-regulation resulted in a significant decrease of cell growth only In the resistant line. We therefore concluded that: i) basal clusterin levels are higher in antiestrogen resistant cells. ii) clusterin is up-regulated following antiestrogen treatment independently of the sensitivity of the cell line, iii) downregulation of cytoplasmic clusterin restores sensitivity to toremifene in the antiestrogen-resistant cell line. Such results support the concept that targeting CLU could represent a promising therapeutic strategy in association with antiestrogen treatment in breast cancer patients

    Head and neck cancer subtypes with biological and clinical relevance : meta-analysis of gene-expression data

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a disease with heterogeneous clinical behavior and response to therapies. Despite the introduction of multimodality treatment, 40-50% of patients with advanced disease recur. Therefore, there is an urgent need to improve the classification beyond the current parameters in clinical use to better stratify patients and the therapeutic approaches. Following a meta-analysis approach we built a large training set to whom we applied a Disease-Specific Genomic Analysis (DSGA) to identify the disease component embedded into the tumor data. Eleven independent microarray datasets were used as validation sets. Six different HNSCC subtypes that summarize the aberrant alterations occurring during tumor progression were identified. Based on their main biological characteristics and de-regulated signaling pathways, the subtypes were designed as immunoreactive, inflammatory, human papilloma virus (HPV)-like, classical, hypoxia associated, and mesenchymal. Our findings highlighted a more aggressive behavior for mesenchymal and hypoxia-associated subtypes. The Genomics Drug Sensitivity Project was used to identify potential associations with drug sensitivity and significant differences were observed among the six subtypes. To conclude, we report a robust molecularly defined subtype classification in HNSCC that can improve patient selection and pave the way to the development of appropriate therapeutic strategies
    corecore