12 research outputs found
Efects of PDT with 5-aminolevulinic acid and chitosan on Walker carcinosarcoma
Porphyrins and new chitosan hydrogels based composites with porphyrins are used as active cytotoxic antitumor agents in photodynamic therapy (PDT). Aim: The present study evaluates the effects of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) and 5-ALA associated with chitosan (CS) using Walker carcinosarcoma in rats as experimental model. Methods: The animals were irradiated with red light (l = 685 nm, D = 50 J/cm2, 15 min) 3 h after i.p. administration of 5-ALA (250 mg/kg b.w.) or a mixture of 5-ALA (250 mg/kg b.w.) and CS (1.5 mg/kg b.w.). The animals were sacrificed at 1, 3, 6, 24 h and 14 days after the treatment. The effects of PDT were investigated by morphological studies, monitoring the 5-ALA induced protoporphyrin IX (Pp IX) level in tumor tissue and serum, MMP 2 and 9 (gelatinases) activity in tumor and malondialdehyde level (MDA), marker of the lipoperoxidation process, in tumor and serum. Results: Zymography revealed an increased activity of MMP 2 in tumors from animals treated with 5-ALA PDT. PDT with 5-ALA induced a higher lipid peroxidation in tumor tissue compared with 5-ALA-CS. CS associated to 5 ALA PDT enhanced the accumulation of PS in tumors inducing earlier necrotic changes. In the same time CS reduced MMP 2 activity. Conclusion: Our results suggest that MMPs activation and oxygen reactive species are involved in PDT effects.Порфирины и новые соединения, основу которых составляют гидрогели хитозана с порфиринами, используются как активные
цитотоксические противоопухолевые препараты при фотодинамической терапии (PDT). Цель: оценить действие
PDT с 5-аминолевуленовой кислотой (5-ALA) и 5-ALA, ассоциированной с хитозаном (CS), на клетки карциносаркомы
Уокера. Методы: крыс облучали красным светом (λ = 685 нм, D = 50 Дж/см2
, 15 мин) 3 ч после внутрибрюшинного введения
5-ALA (250 мг/кг) или смеси 5-ALA (250 мг/кг) и CS (1,5 мг/кг). Подопытных животных забивали через 1 ч, 3 ч, 6 ч,
24 ч и 14 дней после воздействия PDT. Эффект PDT определяли с помощью морфологических исследований, регистрируя
уровень протопорфирина IX (Pp IX), вызываемого 5-ALA, в опухолевой ткани и сыворотке крови, активность MMP 2 и 9
(желатиназы) в опухоли и уровень малонового диальдегида (MDA), маркера процесса перекисного окисления липидов, в
опухоли и сыворотке крови. Результаты: зимографические исследования показали повышенную активность MMP 2 в
опухолях животных, которых подвергали 5-ALA PDT. PDT с 5-ALA вызывала повышенный уровень перекисного окисления
липидов в опухолевой ткани по сравнению с 5-ALA-CS. CS с 5 ALA PDT усиливал накопление фотосенсибилизирующего
вещества (PS) в опухолях, вызывая более ранние некротические изменения. В то же время CS снижал активность MMP 2.
Выводы: полученные результаты позволяют предположить, что для проявления эффектов PDT необходимы активация
MMP и образование активных форм кислорода
The dynamics of reactive oxygen species in photodynamic therapy with tetra sulfophenyl-porphyrin
Photodynamic therapy (PDT) is a promising therapy especially in skin cancer, using the systemic administration of a photosensitizer (PS), followed by the local irradiation of the tumor with visible light. The antitumor effects of PDT are determined especially by the generation of cytotoxic reactive oxygen species (ROS). The 5,10,15,20-tetrasulfophenyl-porphyrin (TSPP) is a synthetic photosensitizer, which proved its efficiency in in vitro studies. Our study evaluates the effects of PDT with TSPP upon the tumor levels of ROS and upon the metalloproteinases 2 (MMP2) activities on Wistar male rats bearing 256 Walker carcinosarcoma in correlation with the accumulation of PS in the tumor and with the intratumor histological alterations. The evaluations were performed dynamically, at 3 hours, 6 hours, 24 hours and 14 days after the PDT with TSPP. Our results emphasize that 24 hours after the PDT with TSPP, the ROS generation increases, as revealed by protein carbonyls and malondialdehyde levels and the antioxidant capacity (hydrogen donors, thiol groups) decreases in the tumor tissue. These parameters were correlated with the appearance of the histological disorders. The MMP-2 activity increases exponentially in the 24 hours — 14 days post PDT interval. PDT with TSPP offers, in vivo, consistent results regarding ROS generation, MMP2 activation and cytotoxic capacity
Non-invasive oxidative stress markers for liver fibrosis development in the evolution of toxic hepatitis
Oxidative stress is related to the liver fibrosis, anticipating the hepatic stellate cells’ (HSC) activation. Our aim was to correlate oxidative stress markers with the histological liver alterations in order to identify predictive, noninvasive parameters of fibrosis progression in the evolution of toxic hepatitis.CCl4 in sunflower oil was administered to rats intragastrically, twice a week. After 2, 3, 4 and 8 weeks of treatment, plasma levels of malondialdehyde (MDA), protein carbonyls (PC), hydrogen donor capacity (HD), sulfhydryl groups (SH), and glutathione (GSH) were measured and histological examination of the liver slides was performed. Dynamics of histological disorders was assessed by The Knodell score. Significant elevation of inflammation grade was obtained after the second week of the experiment only (p=0.001), while fibrosis started to become significant (p=0.001) after 1 month of CCl4 administration. Between plasma MDA and liver fibrosis development a good correlation was obtained (r=0.877, p=0.05). Correlation between PC dynamics and liver alterations was marginally significant for inflammation grade (r=0.756, p=0.138). HD evolution revealed a marginally inverse correlation with inflammation grade (r=−0.794, p=0.108). No correlations could be established for other parameters with either inflammation grade or fibrosis stage.Our study shows that MDA elevation offers the best prediction potential for fibrosis, while marginal prediction fiability could be attributed to high levels of plasma PC and low levels of HD
Oxidative stress in blood and testicle of rat following intraperitoneal administration of aluminum and indium
Aluminum (Al) and indium (In) have embryotoxic, neurotoxic and genotoxic effects, oxidative stress being one of the possible mechanisms involved in their cytotoxicity. We have recently demonstrated that indium intraperitoneal (ip) administration induced histological disorganization of testicular tissue. In the present research we aimed at investigating the effect of Al and In ip administration on systemic and testicular oxidative stress status. Studies were performed on Wistar rats ip injected with Al, In or physiological solution for two weeks. Our results showed that In significantly decreased the absolute weight of testicles. Measurements of lactate dehydrogenase (LDH) and paraoxonase (PON) activities showed that In induced a significant augmentation in the first parameter but no changes were observed in the second. Both Al and In caused oxidative stress in testicles by increasing malondialdehyde (MDA) and protein carbonyls (PC) production. Concomitantly, thiol group (—SH) and glutathione (GSH) level were enhanced in the testicles. In the blood, while concentrations of MDA was not changed, those of GSH was significantly decreased in the Al and In groups. Our results indicated that Al and In cause oxidative stress both in blood and testicles but In has cytotoxic effect as well as negative impact on testicle weights. These findings could explain the testicular histological alterations previously described after In ip administration
Possible in vivo mechanisms involved in photodynamic therapy using tetrapyrrolic macrocycles
Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis