45 research outputs found

    Weak decays of heavy hadrons into dynamically generated resonances

    Get PDF
    In this paper, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allow for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances Read More: http://www.worldscientific.com/doi/10.1142/S021830131630001

    A Search for Light Super Symmetric Baryons

    Get PDF
    We have searched for the production and decay of light super-symmetric baryons produced in 800 GeV/c proton copper interactions in a charged hyperon beam experiment. We observe no evidence for the decays R+(uud \g^~) -> S(uds \g^~) pi+ and X-(ssd \g^~) -> S(uds \g^~) pi- in the predicted parent mass and lifetime ranges of 1700-2500 Mev/c2 and 50-500 ps. Production upper limits for R+ at xF=0.47, Pt=1.4 GeV/c2 and X- at xF=0.48, Pt=0.65 GeV/c2 of less than 10^-3 of all charged secondary particles produced are obtained for all but the highest masses and shortest lifetimes predicted.Comment: 9 pages, uuencoded postscript 4 figures uuencoded, tar-compressed file (submitted to PRL

    Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges

    Get PDF
    A broad diversity of biological organisms and systems interact with soil in ways that facilitate their growth and survival. These interactions are made possible by strategies that enable organisms to accomplish functions that can be analogous to those required in geotechnical engineering systems. Examples include anchorage in soft and weak ground, penetration into hard and stiff subsurface materials and movement in loose sand. Since the biological strategies have been ‘vetted’ by the process of natural selection, and the functions they accomplish are governed by the same physical laws in both the natural and engineered environments, they represent a unique source of principles and design ideas for addressing geotechnical challenges. Prior to implementation as engineering solutions, however, the differences in spatial and temporal scales and material properties between the biological environment and engineered system must be addressed. Current bio-inspired geotechnics research is addressing topics such as soil excavation and penetration, soil–structure interface shearing, load transfer between foundation and anchorage elements and soils, and mass and thermal transport, having gained inspiration from organisms such as worms, clams, ants, termites, fish, snakes and plant roots. This work highlights the potential benefits to both geotechnical engineering through new or improved solutions and biology through understanding of mechanisms as a result of cross-disciplinary interactions and collaborations

    Magneto-Thermal Coupling Simulation of Flowing Liquid Induction Heating through Static Mixer-Type Susceptors

    No full text
    As a new non-contact heating technology, induction heating technology has very broad application prospects in the field of fluid food heating. However, its application is inevitably affected by the heat concentration caused by uneven energy distribution. The uneven temperature distribution of the heating process will lead to the decrease in the quality of heating products. Therefore, based on the previous research, in order to improve the uniformity of heat distribution in the heating process, this study selected the susceptor with the greatest potential for efficient and the most uniform heating fluid to carry out the coupling simulation of electromagnetic heat transfer. The susceptor was simulated and optimized in three aspects: different power comparisons, the influence of structural change on temperature distribution uniformity, and the influence of physical property change of metal material on temperature distribution uniformity. The results show that the simulation results are in good agreement with the experimental results, and the error between the experimental and simulation values of the outlet temperature at Kelvin temperature is less than 0.18%. The change of geometric structure had a great influence on the uniformity of temperature distribution, and the uniformity of temperature distribution was inversely proportional to the conductivity. During the simulation, the temperature of the fluid heated by the susceptor was increased from 284.75 K to about 333K. The temperature distribution of the fluid at the outlet of the susceptor was uniform, and the temperature difference was about 1 K

    Study on Simulation of Fiber Optic Current Sensor

    No full text
    Various applications of fiber optic current sensor are explored now. In this paper a new full-optical current sensor is designed. The fiber-optic current sensor is based on the Faraday rotation effect, and moreover, in this paper the mechanism of Faraday rotation effect of cylinder fiber model is explained. In the present research experimental platform has been set up. And then the Comsol software has been used to simulate the system’ transmission field, which could be achieved by calculating the transmittance of light propagating through POF. Finally the results obtained respectively by traditional structure and new structure are compared. The results may be helpful for the further research on the fiber optic current sensor

    APF-IRRT*: An Improved Informed Rapidly-Exploring Random Trees-Star Algorithm by Introducing Artificial Potential Field Method for Mobile Robot Path Planning

    No full text
    An Informed RRT* (IRRT*) algorithm is one of the optimized versions of a Rapidly-exploring Random Trees (RRT) algorithm which finds near-optimal solutions faster than RRT and RRT* algorithms by restricting the search area to an ellipsoidal subset of the state space. However, IRRT* algorithm has the disadvantage of randomness of sampling and a non-real time process, which has a negative impact on the convergence rate and search efficiency in path planning applications. In this paper, we report a hybrid algorithm by combining the Artificial Potential Field Method (APF) with an IRRT* algorithm for mobile robot path planning. By introducing the virtual force field of APF into the search tree expansion stage of the IRRT* algorithm, the guidance of the algorithm increases, which greatly improves the convergence rate and search efficiency of the IRRT* algorithm. The proposed algorithm was validated in simulations and proven to be superior to some other RRT-based algorithms in search time and path length. It also was performed in a real robotic platform, which shows that the proposed algorithm can be well executed in real scenarios

    RNA–Protein Interactions Prevent Long RNA Duplex Formation: Implications for the Design of RNA-Based Therapeutics

    No full text
    Cells frequently simultaneously express RNAs and cognate antisense transcripts without necessarily leading to the formation of RNA duplexes. Here, we present a novel transcriptome-wide experimental approach to ascertain the presence of accessible double-stranded RNA structures based on sequencing of RNA fragments longer than 18 nucleotides that were not degraded by single-strand cutting nucleases. We applied this approach to four different cell lines with respect to three different treatments (native cell lysate, removal of proteins, and removal of ribosomal RNA and proteins). We found that long accessible RNA duplexes were largely absent in native cell lysates, while the number of RNA duplexes was dramatically higher when proteins were removed. The majority of RNA duplexes involved ribosomal transcripts. The duplex formation between different non-ribosomal transcripts appears to be largely of a stochastic nature. These results suggest that cells are—via RNA-binding proteins—mostly devoid of long RNA duplexes, leading to low “noise” in the molecular patterns that are utilized by the innate immune system. These findings have implications for the design of RNA interference (RNAi)-based therapeutics by imposing structural constraints on designed RNA complexes that are intended to have specific properties with respect to Dicer cleavage and target gene downregulation

    Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly(ester-urethane)s and their properties as UV curable coating materials

    No full text
    This paper reported the synthesis of bio-based unsaturated poly(ester-urethane)s via a nonisocyanate route, by metal-catalyzed melt polycondensation of itaconic acid with urethanediols. Three novel types of bio-based unsaturated poly(ester-urethane)s, namely, poly(urethanediol 2-itaconic acid), poly(urethanediol 4-itaconic acid) and poly(urethanediol 6-itaconic acid) (poly(U2-IA), poly(U4-IA) and poly (U6-IA) for short code, respectively), were prepared by a green synthetic route. The urethane linkage was formed by the reaction of two equivalent of ethylene carbonate with 1,6-hexanediamine, 1,4-butanediamine and 1,2-ethanediamine to form urethanediols. The urethanediols underwent polymerization with itaconic acid (IA) in the presence of metal catalyst dibutyltin dilaurate (DBTL) to produce low-molecular-weight bio-based unsaturated polyurethanes. Then, these bio-based unsaturated poly(ester-urethane)s were formulated with free radical photoinitiator and curing promoter to prepare UV curable polyurethane systems. After UV curing, the tensile properties, thermal properties and general coating properties of the three UV-cured polyurethane films were similar to that of UV cured polyurethane films prepared by polyurethane-acrylate (PUA). The results suggested that the obtained bio-based unsaturated polyurethanes could serve as coating materials
    corecore