34,907 research outputs found
Direct Transient Analysis of a Fuze Assembly by Axisymmetric Solid Elements
A fuze assembly, which consists of three major parts, nose, collar and sleeve, was designed to survive severe transverse impact giving a maximum base acceleration of 20.000 G. It is shown that hoop failure occurred in the collar after the impact. They also showed that by bonding the collar to the nose, the collar was able to survive the same impact. To find out the effectiveness of the bonding quantitatively, axisymmetric solid elements TRAPAX and TRIAAX were used in modelling the fuze and direct transient analysis was performed. The dynamic stresses in selected elements on the bonded and unbonded collars were compared. The peak hoop stresses in the unbonded collar were found to be up to three times higher than those in the bonded collar. The NASTRAN results explained the observed hoop failure in the unbonded collar. In addition, static and eigenvalue runs were performed as checks on the models prior to the transient runs. The use of the MPCAX cards and the existence and contributors of the calculated first several nearly identical natural frequencies are addressed
Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency
accepteddate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfdate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfWe present Tony, a software tool for the interactive an- notation of melodies from monophonic audio recordings, and evaluate its usability and the accuracy of its note extraction method. The scientific study of acoustic performances of melodies, whether sung or played, requires the accurate transcription of notes and pitches. To achieve the desired transcription accuracy for a particular application, researchers manually correct results obtained by automatic methods. Tony is an interactive tool directly aimed at making this correction task efficient. It provides (a) state-of-the art algorithms for pitch and note estimation, (b) visual and auditory feedback for easy error-spotting, (c) an intelligent graphical user interface through which the user can rapidly correct estimation errors, (d) extensive export functions enabling further processing in other applications. We show that Tony’s built in automatic note transcription method compares favourably with existing tools. We report how long it takes to annotate recordings on a set of 96 solo vocal recordings and study the effect of piece, the number of edits made and the annotator’s increasing mastery of the software. Tony is Open Source software, with source code and compiled binaries for Windows, Mac OS X and Linux available from https://code.soundsoftware.ac.uk/projects/tony/
Spin current through an ESR quantum dot: A real-time study
The spin transport in a strongly interacting spin-pump nano-device is studied
using the time-dependent variational-matrix-product-state (VMPS) approach. The
precession magnetic field generates a dissipationless spin current through the
quantum dot. We compute the real time spin current away from the equilibrium
condition. Both transient and stationary states are reached in the simulation.
The essentially exact results are compared with those from the Hartree-Fock
approximation (HFA). It is found that correlation effect on the physical
quantities at quasi-steady state are captured well by the HFA for small
interaction strength. However the HFA misses many features in the real time
dynamics. Results reported here may shed light on the understanding of the
ultra-fast processes as well as the interplay of the non-equilibrium and
strongly correlated effect in the transport properties.Comment: 5 pages, 5 figure
Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit
Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of grape berries from either field-grown vines or fruiting cuttings grown in the greenhouse. Principal component analysis readily discriminated the various stages of berry development, with similar trajectories for field-grown and greenhouse samples. This showed that each stage of fruit development had a characteristic metabolic profile and provided compelling evidence that the fruit-bearing cuttings are a useful model system to investigate regulation of central carbon metabolism in grape berry. The metabolites measured showed tight coordination within their respective pathways, clustering into sugars and sugar-phosphate metabolism, glycolysis, and the tricarboxylic acid cycle. In addition, there was a pronounced shift in metabolism around veraison, characterized by rapidly increasing sugar levels and decreasing organic acids. In contrast, glycolytic intermediates and sugar phosphates declined before veraison but remained fairly stable post-veraison. In summary, these detailed and comprehensive metabolite analyses revealed the timing of important switches in primary carbohydrate metabolism, which could be related to transcriptional and developmental changes within the berry to achieve an integrated understanding of grape berry development. The results are discussed in a meta-analysis comparing metabolic changes in climacteric versus non-climacteric fleshy fruits
An exactly solvable phase transition model: generalized statistics and generalized Bose-Einstein condensation
In this paper, we present an exactly solvable phase transition model in which
the phase transition is purely statistically derived. The phase transition in
this model is a generalized Bose-Einstein condensation. The exact expression of
the thermodynamic quantity which can simultaneously describe both gas phase and
condensed phase is solved with the help of the homogeneous Riemann-Hilbert
problem, so one can judge whether there exists a phase transition and determine
the phase transition point mathematically rigorously. A generalized statistics
in which the maximum occupation numbers of different quantum states can take on
different values is introduced, as a generalization of Bose-Einstein and
Fermi-Dirac statistics.Comment: 17 pages, 2 figure
- …