47 research outputs found

    Autonomous Cleaning of Corrupted Scanned Documents - A Generative Modeling Approach

    Full text link
    We study the task of cleaning scanned text documents that are strongly corrupted by dirt such as manual line strokes, spilled ink etc. We aim at autonomously removing dirt from a single letter-size page based only on the information the page contains. Our approach, therefore, has to learn character representations without supervision and requires a mechanism to distinguish learned representations from irregular patterns. To learn character representations, we use a probabilistic generative model parameterizing pattern features, feature variances, the features' planar arrangements, and pattern frequencies. The latent variables of the model describe pattern class, pattern position, and the presence or absence of individual pattern features. The model parameters are optimized using a novel variational EM approximation. After learning, the parameters represent, independently of their absolute position, planar feature arrangements and their variances. A quality measure defined based on the learned representation then allows for an autonomous discrimination between regular character patterns and the irregular patterns making up the dirt. The irregular patterns can thus be removed to clean the document. For a full Latin alphabet we found that a single page does not contain sufficiently many character examples. However, even if heavily corrupted by dirt, we show that a page containing a lower number of character types can efficiently and autonomously be cleaned solely based on the structural regularity of the characters it contains. In different examples using characters from different alphabets, we demonstrate generality of the approach and discuss its implications for future developments.Comment: oral presentation and Google Student Travel Award; IEEE conference on Computer Vision and Pattern Recognition 201

    Unsupervised Learning with Imbalanced Data via Structure Consolidation Latent Variable Model

    Full text link
    Unsupervised learning on imbalanced data is challenging because, when given imbalanced data, current model is often dominated by the major category and ignores the categories with small amount of data. We develop a latent variable model that can cope with imbalanced data by dividing the latent space into a shared space and a private space. Based on Gaussian Process Latent Variable Models, we propose a new kernel formulation that enables the separation of latent space and derives an efficient variational inference method. The performance of our model is demonstrated with an imbalanced medical image dataset.Comment: ICLR 2016 Worksho

    Batch Bayesian Optimization via Local Penalization

    Full text link
    The popularity of Bayesian optimization methods for efficient exploration of parameter spaces has lead to a series of papers applying Gaussian processes as surrogates in the optimization of functions. However, most proposed approaches only allow the exploration of the parameter space to occur sequentially. Often, it is desirable to simultaneously propose batches of parameter values to explore. This is particularly the case when large parallel processing facilities are available. These facilities could be computational or physical facets of the process being optimized. E.g. in biological experiments many experimental set ups allow several samples to be simultaneously processed. Batch methods, however, require modeling of the interaction between the evaluations in the batch, which can be expensive in complex scenarios. We investigate a simple heuristic based on an estimate of the Lipschitz constant that captures the most important aspect of this interaction (i.e. local repulsion) at negligible computational overhead. The resulting algorithm compares well, in running time, with much more elaborate alternatives. The approach assumes that the function of interest, ff, is a Lipschitz continuous function. A wrap-loop around the acquisition function is used to collect batches of points of certain size minimizing the non-parallelizable computational effort. The speed-up of our method with respect to previous approaches is significant in a set of computationally expensive experiments.Comment: 11 pages, 10 figure

    Truncated Variational Sampling for "Black Box" Optimization of Generative Models

    Get PDF
    We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, and investigate the "black box" applicability of the resulting optimization procedure. For general purpose applicability, samples are drawn from approximate marginal distributions of the considered generative model as well as from the model's prior distribution. As such, variational sampling is defined in a generic form, and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which are models with binary observables). Numerical experiments verify that the investigated approach efficiently as well as effectively increases a variational free energy objective without requiring any additional analytical steps
    corecore