
 Bodin, E., Tomasi, F., & Dai, Z. (2021). Making Differentiable
Architecture Search less local. Ninth International Conference on
Learning Representations.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM).

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://research-information.bris.ac.uk/en/publications/0d0fd5c7-c747-48d7-880e-81c4ce4b1950
https://research-information.bris.ac.uk/en/publications/0d0fd5c7-c747-48d7-880e-81c4ce4b1950

2nd Workshop on Neural Architecture Search at ICLR 2021

MAKING DIFFERENTIABLE ARCHITECTURE SEARCH
LESS LOCAL

Erik Bodin ∗
Spotify & University of Bristol

Federico Tomasi
Spotify

Zhenwen Dai
Spotify

ABSTRACT

Neural architecture search (NAS) is a recent methodology for automating the de-
sign of neural network architectures. Differentiable neural architecture search
(DARTS) is a promising NAS approach that dramatically increases search effi-
ciency. However, it has been shown to suffer from performance collapse, where
the search often leads to detrimental architectures. Many recent works try to ad-
dress this issue of DARTS by identifying indicators for early stopping, regularis-
ing the search objective to reduce the dominance of some operations, or changing
the parameterisation of the search problem. In this work, we hypothesise that per-
formance collapses can arise from poor local optima around typical initial archi-
tectures and weights. We address this issue by developing a more global optimisa-
tion scheme that is able to better explore the space without changing the DARTS
problem formulation. Our experiments show that our changes in the search algo-
rithm allow the discovery of architectures with both better test performance and
fewer parameters.

1 INTRODUCTION

Designing neural network architectures improving upon the state-of-the-art requires a substantial
effort of human experts. Automating the discovery of neural network architectures by formulating
it as a search problem allows us to minimise the human time spent on the search process. Due to the
large combinatorial search space of possible neural network architectures, early methods (19; 20; 15)
were computationally very demanding, often requiring thousands of GPU days of computation for
search, giving rise to high costs. Many neural architecture search (NAS) works have been focused
on reducing the computational cost, (10; 1; 6; 14; 2). Among them, Liu et al. (11) proposed a
particularly efficient approach by making the search space of architectures differentiable (known as
DARTS), which reduced the search cost by several orders of magnitude.

Although being efficient, recent works have shown that DARTS suffers from performance collapse
due to the search favouring parameter-less operations like skip connections (5; 18). Many follow-up
works have been proposed to fix the performance collapse problem by identifying indicators for
early stopping, regularising the search objective to reduce skip connections, or changing the search
problem’s parameterisation. Chen & Hsieh (3) and Zela et al. (18) proposed to stabilise the search
process by regularising the Hessian of the search objective. Chu et al. (5) avoid the advantage of
the skip connections in the search phrase by replacing the softmax with the sigmoid function for
the switch among edges. Chu et al. (4) avoided the dominance of skip connections by changing the
parameterisation of the search space.

In this paper, we hypothesise that performance collapses and the dominance of some operations
observed in several works are the consequence of the existence of poor local optima around typical
initial architectures and weights. Instead of identifying indicators for early stopping or tweaking
the search space’s parameterisation, we propose that a more global optimisation scheme should
be developed that allows us to avoid bad local optima and better explore the objective over the
search space to discover better solutions. We show in experiments that even a simple scheme to
make the optimisation more global reduces detrimental behaviours significantly. Importantly, it
removes the need to stop the search early in order to avoid reaching detrimental or invalid solutions.

∗This work was done during an internship at Spotify.

1

2nd Workshop on Neural Architecture Search at ICLR 2021

20 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ed

ge
 w

ei
gh

t

Normal cell
Normal cell (discretized)
Reduction cell
Reduction cell (discretized)
Search originally stopped

100 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ed

ge
 w

ei
gh

t

200 400
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ed

ge
 w

ei
gh

t

Figure 1: The FairDARTS search needs to be stopped early to avoid the normal cell having no
remaining active edges following discretisation. Shown is the mean cell weights (following the sig-
moid activation function) for the normal and reduction cell, respectively, for three runs on different
budgets. The same issue persisted on every run. The discretisation threshold used is 0.85, but the
issue applies to any thresholding rule as all normal cell edge weights tend to zero.

We show that, after searching until convergence, our method can find architectures with better test
performance and fewer parameters.

2 EMPIRICAL DIAGNOSIS

FairDARTS is a state-of-the-art DARTS variant presented in (5). The method includes structural
changes to the original DARTS search space, allowing multiple edges per pair of nodes in the
searched cell structure. This was implemented by switching the softmax activation function on
the weights to a sigmoid function. Another change was adding a regularisation term (a ‘zero-one
loss’), encouraging the continuous edge activations to better approximate the binary discretisation
of the cell happening after the search phase.

FairDARTS improved upon the DARTS method, reducing the issue with skip connections domi-
nating, and ultimately lead to better architectures in terms of final test performance compared to
DARTS and other variants. However, as we will demonstrate, another similar issue presents itself
(still) in the FairDARTS method. What happens is that one of the searched cell types, the ‘reduction
cell’, dominates the other (the ‘normal cell’), to the detriment of test performance and reliability. In
particular, if searching for longer than a small fraction of as many epochs later used for the training
in the final evaluation phase, the test performance decays, and the architectures produced quickly
become invalid. We illustrate this in Figure 1 (the experiments were conducted on CIFAR-10 us-
ing the implementation and the setup as in (5)). We note that the edge weights associated with the
normal cell decrease monotonically after a certain number of epochs. If the search is not stopped
early, at the right time, the weights of all operations in the normal cell become zero, resulting in no
activations being able to propagate through the cell following discretisation. In (5) the search was
stopped after only 1/12 of the number of epochs later used to train the final architecture.

Being forced to stop the search early to avoid detrimental architectures has two negative conse-
quences. Firstly, the right time to stop the search becomes an additional hyperparameter to tune to
obtain good performance. Secondly, it can inhibit better architectures to be found by searching for
longer. Both of these aspects are important for building a reliable NAS method for a wide range of
datasets and tasks.

3 GLOBAL OPTIMISATION FOR DIFFERENTIABLE NAS

DARTS (11), as similar to prior works (20; 15; 10), searches for a cell, which is used as a building
block for the final architecture. The cell constitutes a directed acyclic graph of N nodes. Each node
x represents a latent representation and each directed edge (i, j) represents an operation oi,j . A node
depends on all of its predecessors as xj =

∑
i<j oi,j(xi). Let O be the set of candidate operations

(e.g., convolution, max pooling, skip connection) available for each edge (i, j). FairDARTS (5)
defines the choice of operations for an edge as ōi,j(x) =

∑
o∈O σ(αoi,j)o(x), where σ(·) is the

2

2nd Workshop on Neural Architecture Search at ICLR 2021

Algorithm 1: Doubly Stochastic Coordinate Descent (global step)
Input: Function f defined over X , proposal distribution q, initial xbest, ybest
Output: xbest, ybest

1 while budget remaining do
2 d = sample a random dimension();
3 x ∼ q(x|xbest[d], d);
4 y = f(x);
5 if y < ybest then
6 xbest = x, ybest = y;
7 end
8 end

sigmoid function. This allows multiple operations per edge to be chosen simultaneously. If no
operations are active for a given edge this constitute the zero operation (18).

Let α be the concatenated vector of all operation edge weights representing the architecture, in
which the ones associated with the normal cell and the reduction cell are denoted by αnormal and
αreduction respectively, i.e., α = (αnormal,αreduction). Let w be the concatenated neural network
parameters associated with all operations, where similarly w = (wnormal,wreduction).

The architecture search problem in DARTS can be stated as a bilevel optimisation problem:

minimize
α

Lval(α,w
∗) (1a)

subject to w∗ = arg min
w

Ltrain(α,w), (1b)

where Lval and Ltrain are the validation loss and training loss, respectively. DARTS approximates
the gradient as ∇αLval(α,w

∗) ≈ ∇αLval(α,w − ξ∇wLtrain(α,w)), where ξ is the learning rate
for the inner optimisation, and gradient-based local optimisation is performed in alternating steps.

Global Optimisation Scheme. We hypothesise that the usage of local search for the α weights in
the DARTS’ approximation to the bilevel optimisation problem leads to convergence to local optima
associated with performance collapse. We propose an optimisation scheme that makes the search for
the α weights “more global” in the sense that local valleys can be escaped using a complementary
global optimisation routine.

Our optimisation scheme consists of two types of steps: local and global steps. The algorithm alter-
nates between taking local and global steps, similar to basin-hopping (17) for global optimisation.
A local step is a step in the gradient direction, the same as in (11). A global step is taken accord-
ing to the proposed doubly stochastic coordinate descent (DSCD) algorithm. DSCD follows the
stochastic coordinate descent approach (13) and draws a random dimension of which to consider
next. In DSCD, only a single (global) step is taken each time a dimension is sampled, and the step
is stochastic, where the new position (for the sampled dimension) is a sample from a proposal dis-
tribution. The sample is accepted as the new position only if the objective improves upon the best
lost within the last K steps 1. The global step is global in the sense that there does not need to be
a monotonically improving trajectory between any two positions (in terms of the loss surface), thus
allowing ‘jumps’ between valleys 2 . The outline of DSCD is shown in Algorithm 1. We propose an
annealing scheme for the proposal distribution. The proposal distribution is parameterised as a Beta
distribution over a bounded space. At the beginning of the optimisation, the proposal distribution is
uniform, and it slowly moves towards a Dirac delta centred at the current position, thus becoming
increasingly local as the search progresses. The details of the annealing scheme for the proposal can
be found in the appendix. We alternate between taking local and global steps when the following is
both true; T consecutive steps of the same type has been taken, and the loss did not improve from
the last step to the next. In all experiments, we set T = 50, and noticed little to no importance of
tuning this parameter. In the appendix we assess the benefit of DSCD on multimodal functions.

1In practice we used K = 1000. Only considering the best loss within a (relatively large) window, rather
than the historical best, we noted was helpful to be robust to outlier losses as a result of the mini-batching.

2Strictly this does not need to be true for stochastic gradient descent either, but in SGD it is still statistically
unlikely to take steps in non-monotonically improving directions.

3

2nd Workshop on Neural Architecture Search at ICLR 2021

500 1000 1500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ed

ge
 w

ei
gh

t

Normal cell
Normal cell (discretized)
Reduction cell
Reduction cell (discretized)

1000 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ed

ge
 w

ei
gh

t

1000 2000 3000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ed

ge
 w

ei
gh

t

Figure 2: Using the new optimisation scheme the architecture does no longer become invalid by
searching for longer. Shown is the mean cell weights (following the sigmoid activation function) for
the normal and reduction cell, respectively, on three runs on different budgets.

Table 1: Comparison with FairDARTS for search and evaluation phases (accuracy in %). Split
for Ltrain and Lval indicates accuracy measured on the training data for Ltrain and Lval respectively.
Search Test indicates the accuracy on the hold-out set using the search network (undiscretised).
Eval. Test indicates the test accuracy with the final architecture. “Invalid arch.” denotes no valid
final architecture after discretisation.

Method Search Phase Final Arch.
Split for Ltrain Split for Lval Search Test Eval. Test

FairDARTS (50) 82.02 75.61 76.15 97.36
FairDARTS (75) 87.35 78.10 78.65 97.29

FairDARTS (250) 96.95 81.55 81.52 Invalid arch.
FairDARTS (500) 99.92 83.49 83.26 Invalid arch.

FairDARTS + DSCD (1500) 100.0 83.12 83.40 97.50
FairDARTS + DSCD (2000) 100.0 84.02 84.71 97.25
FairDARTS + DSCD (3000) 100.0 85.51 85.10 96.92

4 EXPERIMENTS

We previously showed that all the edge weights of normal cells αnormal tend towards zero in Fair-
DARTS, resulting in invalid architectures. We will now demonstrate that our optimisation scheme
explores the architecture space better. As a result, it avoids invalid architectures, discovers archi-
tectures with better test performance, and converges to good solutions without early stopping. In
the experiments, the same setup as in (5) is used, except for “FairDARTS + DSCD” for which we
replace the local optimiser (Adam (9)) with the proposed optimisation scheme. In Figure 2 we see
that the edge weights of the normal cell no longer become zero, even if searching for much longer,
and the resulting architecture can be successfully discretised. The mean weights, after discretisation,
slowly move towards the mean weights before discretisation. Importantly, the edges that will be kept
(above the 0.85 threshold) remained the same from 1500 epochs, which is indicative of convergence.

In Table 1 we see the accuracy of the final architectures and the searches, corresponding to Figures 1
and 2. Using our optimisation scheme (DSCD), the models produced become increasingly more
accurate with more search, while remaining valid. Our method using 1500 epochs for search pro-
duces a higher test accuracy during the search phase than FairDARTS, which also results in a high
test accuracy with the final architecture. Despite the test accuracy of our method increasing with
more search epochs, the test accuracy of the resulting final architectures decreases. We argue that
this is due to the fact that the network used during the search phase is different from the network for
evaluation (a network trained from scratch using the final architecture) (5). Differences between the
search architecture and final architecture include discretisation, that the final architecture is larger
and has auxiliary heads (5), as well as that the training paths are different (weights and architecture
together versus weights only). A comparison to other DARTS variants is included in the appendix.

5 CONCLUSION

Neural architecture search requires three things: a space of models with good inductive biases, a loss
function to assess models, and an optimisation or inference algorithm to explore the space. In this
work we focused on the optimisation algorithm, and we showed that by combining gradient-based,
local search with global optimisation techniques, we are able to better explore the space.

4

2nd Workshop on Neural Architecture Search at ICLR 2021

REFERENCES

[1] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simpli-
fying one-shot architecture search. In International Conference on Machine Learning, pages
550–559, 2018.

[2] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient architecture search by network
transformation. arXiv preprint arXiv:1707.04873, 2017.

[3] X. Chen and C.-J. Hsieh. Stabilizing differentiable architecture search via perturbation-based
regularization. In Proceedings of the 37th International Conference on Machine Learning,
pages 1554–1565, 2020.

[4] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan. {DARTS}-: Robustly stepping out of
performance collapse without indicators. In International Conference on Learning Represen-
tations, 2021.

[5] X. Chu, T. Zhou, B. Zhang, and J. Li. Fair darts: Eliminating unfair advantages in differentiable
architecture search. In European Conference on Computer Vision, pages 465–480. Springer,
2020.

[6] T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient architecture search for convolu-
tional neural networks. arXiv preprint arXiv:1711.04528, 2017.

[7] N. Hansen and S. Kern. Evaluating the cma evolution strategy on multimodal test functions. In
International Conference on Parallel Problem Solving from Nature, pages 282–291. Springer,
2004.

[8] M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global optimisation
problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150–194, 2013.

[9] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR, 2015.

[10] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy. Progressive neural architecture search. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 19–34, 2018.

[11] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[12] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[13] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[14] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

[15] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier
architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33,
pages 4780–4789, 2019.

[16] M. Styblinski and T.-S. Tang. Experiments in nonconvex optimization: stochastic approxi-
mation with function smoothing and simulated annealing. Neural Networks, 3(4):467–483,
1990.

[17] D. J. Wales and J. P. Doye. Global optimization by basin-hopping and the lowest energy struc-
tures of lennard-jones clusters containing up to 110 atoms. The Journal of Physical Chemistry
A, 101(28):5111–5116, 1997.

[18] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. Understanding and robus-
tifying differentiable architecture search. arXiv preprint arXiv:1909.09656, 2019.

5

2nd Workshop on Neural Architecture Search at ICLR 2021

[19] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[20] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018.

Appendix

A COMPARISON WITH OTHER DARTS METHODS

We also compared our approach with other state-of-the-art NAS methods in the DARTS family. The
results are shown in Table 2.

Table 2: Comparison of state-of-the-art NAS models on CIFAR-10. FairDARTS∗ differs from
FairDARTS in that the former uses additional post-processing of the edge weights after search, with
a hard limit on the number of edges kept per node pair.

Method Params (M) FLOPS (M) Accuracy (%)
DARTS (11) 3.3 528 97.00
DARTS- (4) 3.5 583 97.41

FairDARTS∗ (5) 2.8 373 97.46
FairDARTS 6.4 966 97.36

FairDARTS + DSCD 3.6 532 97.50

B ASSESSMENT OF DSCD ON MULTIMODAL FUNCTIONS

To confirm and quantify the beneficial effect of complementing gradient-based, local optimisation
(Adam) with the proposed doubly stochastic coordinate descent (DSCD) routine, we performed
comparisons with and without the routine on synthetic functions with known properties. For refer-
ence, we compare to performing uniform sampling over the domain, as well as Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (7), a popular global optimisation method.

In Figure 3 we show the results on the Styblinski-Tang function (16) and the Schwefel function (8),
which are popular functions for benchmarking optimization methods. Both functions have several
local minima that are worse than the global minimum. We note that for every setting of Adam with a
particular learning rate, or using a learning rate schedule, complementing the local steps with DSCD
global steps (Section 3) improves the performance. On the Styblinski-Tang function, the difference
is dramatic, as all the Adam variants without DSCD become stuck in a bad local minimum at every
run.

C BETA ANNEALING

For setting the proposal distribution, we propose an annealing scheme, which we will refer to as
Beta annealing. The idea is that, at each step, we will sample a new (scaled) position following a
Beta distribution, parameterised to have a varied concentration around the current position.

In practice, for our specific problem of setting operation edge weights going through a sigmoid, we
set the proposal domain as [−3, 3] for every dimension, which accounts for the region of the domain
with a significant effect on the output. Note, however, that positions outside the domain are still
possible to reach as of the local optimiser, although position outside will not be proposed in this
step.

The current position we (min-max) normalize using the domain, so that it corresponds to a unit
position υi ∈ [0, 1]. The new proposal unit position, which we address below, is then mapped back
to the original domain before the loss evaluation.

6

2nd Workshop on Neural Architecture Search at ICLR 2021

Figure 3: Shown is the median loss of 20 runs from uniformly sampled initial positions. Shaded
areas display the 95% CI of the median. The numbers following “Adam” for each entry in the legend
denote the used learning rate, where “schedule” denotes a linear learning rate scheduling between
0.001 and 0.1. The postfix “+ DSCD” denotes complementing the method with DSCD (Section 3).

We define a concentration parameter φ ∈ [0, 1), where φ = 0 correspond to an uniform distribution
of the (unit) domain, and φ → 1 tends towards a Dirac delta located at the current position. The
former represents full global exploration (of the sampled dimension), independent of the current
position. The latter represents full local exploitation at the current position. These two extremes are
represented as parameterisations of a Beta distribution, and all the intermediate settings are as well.
During search we start with φ = 0 and anneal towards φ = 1 at the final epoch. The annealing
schedule used for φ is cosine annealing, typically used for learning rate scheduling (12).

The proposal (unit) position is sampled as υi+1 ∼ Beta(αi, βi), where the αi, βi parameters depend
on φ and the current (unit) position υi. Specifically, αi, βi is derived at each step as following.

The two extremes, the uniform (φ = 0) and Dirac delta (φ = 1), have known α and β parameters,
as we can solve for them given their respective (known) mean and standard deviation values,

µunit uniform = 0.5, σunit uniform = 1/
√
12. (2) µDirac delta = υi, σDirac delta = 0. (3)

We linearly interpolate the mean µ and the standard deviation σ parameters to obtain the intermediate
Beta distribution parameterisations in between the two extremes,

µ := φυi + (1− φ)µuniform (4) σ := (1− φ)σuniform. (5)

Note that the standard deviation σ will approach (but never reach) zero as of φ < 1.

We then solve for α and β using the analytical mean and standard deviation of Beta distributions,
resulting in

7

2nd Workshop on Neural Architecture Search at ICLR 2021

α = c1β (6) β =
c1 − c2
c2(c1 + 1)

, (7)

where c1 = µ
1−µ and c2 = σ2(c1 + 1)2.

In the supplement we include an animation showing intermediate Beta distributions for various φ
around a fixed point (υi = 0.75).

D BACKGROUND

In (18) it was shown that detrimental solutions, in particular solutions exhibiting an overly large
number of skip connections, coincide with high validation loss curvatures. In their work, they view
these as problematic solutions within the solution set of the model. They propose regularisation on
the weight space and early stopping, which they show is helpful in avoiding reaching these solutions.
(5) instead proposes a change to the model, where different operation edges between the same nodes
are not mutually exclusive, and they also propose a regularisation term pushing edge weights towards
either zero or one. These alterations they show are beneficial for avoiding an over-reliance on skip
connections, as well as reducing the approximation error resulting from the discretisation of the edge
weights happening between the search and evaluation phase. In addition, they made the solution set
more expressive as of allowing multiple simultaneous operations between the same nodes of a cell.
In our work, we show that (5) still suffers from another detrimental effect, similar to the one it was
addressing, indicating that the issue has not yet been solved in full. Similar to DARTS (11) and
RobustDARTS (18), FairDARTS (5) constructs the architecture from copies of a normal cell and a
reduction cell. What we show is that, using FairDARTS, the search is required to be stopped early
to avoid reaching solutions that are detrimental to test performance during the evaluation phase or
ultimately reaching invalid solutions post-discretisation. Notably, the architecture - as described by
its operation edge weights - changes very little from very early on in the search until it is stopped.
After the epoch it would have been stopped, the operation edge weights belonging to nodes in the
normal cell all tend to zero. Following discretisation of the edge weights, the normal cell no longer
propagates activations through, making the architecture invalid.

We suggest that the cause of this problem is that the detrimental solutions correspond to local minima
in the edge weights space, given typical initial positions in the neural network parameters space. In
particular, that as a consequence of the reduction cell operations relying on fewer parameters than
normal cell operations, such solutions take up a large volume of the neural parameter space.

To see this, let us consider a detrimental solution {α,w}detrimental, where all αnormal elements are
close to zero. As will be confirmed in experiments, the neural network is sufficiently flexible to
produce low loss solutions despite these elements being close to zero. Note that as long as activations
can propagate through the normal cell, the reduction cell, being sufficiently expressive, can still
represent low loss mappings. Furthermore, for constellations where the operations in the normal
cell have little to no effect on the loss, this directly translates into invariance to all of the associated
wnormal neural network parameters. In other words, such solutions are ”large” in the sense that
functionally equivalent solutions exist at all positions in the wnormal subspace. We may think of this
as an equivalent solution set.

Secondly, consider a random initial set of neural network parameter values, winitial. The ”larger”
an equivalent solution set is, the more likely it is that winitial will end up inside or ”close” to it. In
general, as well known and studied in the optimisation literature, gradient-based local optimisation
is subject to finding local which are not necessarily global minima. In many applications, such
as optimisation of neural network parameters alone, a local minimum might be ”good enough”.
However, in this application, if it is applied to αnormal, it may add a bias towards local solutions,
being compatible edge weights with the initial values of the neural network parameters.

8

2nd Workshop on Neural Architecture Search at ICLR 2021

E DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

E.1 ARCHITECTURE

DARTS (11), as similar to prior works (20; 15; 10), searches for a cell as the building block for
the final architecture. In the case of convolutional networks, the cell is stacked, and for recurrent
networks, it is recursively connected.

The cell constitutes a directed acyclic graph of N nodes. Each node x represents a latent repre-
sentation and each directed edge (i, j) represents an operation oi,j . A node depends on all of its
predecessors as

xj =
∑
i<j

oi,j(xi). (8)

The cell is assumed to have two input nodes and a single output node. In the case of convolutional
networks, the input nodes are the outputs of the previous two layers, and for recurrent cells, the
input nodes represent the current step, and the state carried from the previous step. The cell output
is obtained by a reduction operation (e.g. concatenation) to all the intermediate nodes.

Let O be the set of candidate operations (e.g., convolution, max pooling, skip connection) available
for each edge (i, j). (11) proposed a relaxation over the discrete operation choice using softmax

ōi,j(x) =
∑
o∈O

exp(αoi,j)∑
o′∈O exp(αo′i,j)

o(x), (9)

where the operation weights for a pair of nodes (i, j) are parameterised by a vectorαi,j of dimension
|O|. Importantly, this makes the search space continuous and allows gradient-based optimisation
methods.

FairDARTS (5), building upon (11), proposed replacing Eq. 9 with

ōi,j(x) =
∑
o∈O

σ(αoi,j)o(x) (10)

where σ is the sigmoid function. This allows multiple operations per edge to be chosen simultane-
ously. If no operations are active for a given edge, this constitutes the zero operation (18).

For the case of convolutional neural networks, on which we will focus in this paper, both DARTS
and FairDARTS searches for a normal cell and a reduction cell to build up the final architecture. The
reduction cell, in contrast to the ’normal’ cell, reduces the number of activation maps (or channels)
out from the cell.

E.2 SEARCH

Let α be the concatenated vector of all operation edge weights representing the architecture, and
w be the concatenated neural network parameters associated with all operations. The α vector
contains the operation edge weights associated with both the normal cell and the reduction cell that
are being searched for, i.e. α = {αnormal,αreduction}, and the same applies to the weight parameters,
w = {wnormal,wreduction}.
The architecture search problem was in (11) stated as the bi-level optimisation problem

minimize
α

Lval(α,w
∗) (11a)

subject to w∗ = arg min
w

Ltrain(α,w), (11b)

where Lval and Ltrain are the validation loss and training loss, respectively.

The proposed optimisation procedure in (11) is to approximate the gradient as

∇αLval(α,w
∗) ≈ ∇αLval(α,w − ξ∇wLtrain(α,w)) (12)

and perform gradient-based local optimisation, alternating between taking a step in the optimisation
problem of arg minα Lval and of arg minw Ltrain. w are the current weights and ξ is the learning

9

2nd Workshop on Neural Architecture Search at ICLR 2021

Algorithm 2: Local optimisation with global optimisation backtracking
Input: Function f defined over X , initial xbest, ybest, local step, global step
Output: xbest, ybest

1 reset schedule;
2 while budget remaining do
3 take global step = schedule.current();
4 if take global step then
5 xbest, ybest = global step(xbest, ybest) ;
6 xcurrent, ycurrent = xbest, ybest;
7 else
8 xcurrent, ycurrent = local step(xcurrent, ycurrent);
9 if ycurrent < ybest then

10 xbest, ybest = xcurrent, ycurrent;
11 end
12 end
13 schedule.step(ybest);
14 end
15 return xbest, ybest;

rate for a step in the inner optimisation problem (Eq. 11b). This can be described as, at iteration t,
take steps using the gradients defined at

∇αLval(αt,wt), (13)

followed by
∇wLtrain(αt+1,wt), (14)

where αt and wt is the position of respective parameter at the beginning of the iteration, and αt+1

and wt+1 the updated positions, respectively.

F GLOBAL OPTIMISATION SCHEME

In Section D we hypothesised that the usage of local search for the α weights adds bias towards
solutions compatible with w solutions that are closer to the initial position. We will now describe
a simple hybrid scheme, which makes the search for the α weights ”more global” in that it is less
subject to the local curvature of the loss surface. We will later evaluate this scheme empirically,
contrasting it to the previous, fully local search.

The α parameter, being the collection of operation edge weights representing the architecture, is
typically vastly different than the neural network parameters w in dimensionality. α is, for the
search spaced addressed, 196-dimensional, while w has millions of parameters. In FairDARTS
and other DARTS variants, both parameters are optimised using gradient-based local optimisation,
with alternating steps as described in Section E.2. However, the moderate dimensionality of the
α parameter makes it practically feasible to apply global optimisation techniques to optimise it.
Specifically, we will make use of the idea of coordinate descent, where one coordinate is optimised
at a time, as well as annealed sampling. In this section, we will describe a simple hybrid between
local and global optimisation, which we later show performs well empirically.

We will first outline the general algorithm of the hybrid approach in Algorithm 1, in turn, param-
eterised by functions responsible for taking a ”local” step and ”global” step, respectively. At this
abstraction level, we only distinguish between a global and local step, by if after taking the step, the
”current position” is the same as the ”best observed” position so far, in terms of smallest loss. For
brevity, we leave out that the global step function considers all observations so far, without loss of
generality. The remaining components are specified in Section 3 and Section C.

10

	Introduction
	Empirical diagnosis
	Global Optimisation for Differentiable NAS
	Experiments
	Conclusion
	Comparison with other DARTS methods
	Assessment of DSCD on multimodal functions
	Beta annealing
	Background
	Differentiable Neural Architecture Search
	Architecture
	Search

	Global Optimisation Scheme

