10 research outputs found

    Efficacy of a ‘lethal house lure’ against Culex quinquefasciatus from Bouaké city, Côte d’Ivoire

    Get PDF
    Background: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions. Methods: Larvae of Cx. quinquefasciatus from Bouaké were collected and reared to adult stage, and World Health Organization (WHO) cylinder tests were performed to determine their resistance status. WHO standard 3-min cone bioassays were conducted using PermaNet 2.0 netting versus eave tube-treated inserts. To assess the transient exposure effect on Cx. quinquefasciatus, eave tube assay utilizing smelly socks as attractant was performed with exposure time of 30 s, 1 min, and 2 min on 10% beta-cyfluthrin-treated inserts. Residual activity of these treated inserts was then monitored over 9 months. Field tests involving release–recapture of Cx. quinquefasciatus within enclosures around experimental huts fitted with windows and untreated or insecticide-treated eave tubes were conducted to determine house entry preference and the impact of tubes on the survival of this species. Results: Bouaké Cx. quinquefasciatus displayed high resistance to three out of four classes of insecticides currently used in public health. After 3 min of exposure in cone tests, 10% beta-cyfluthrin-treated inserts induced 100% mortality in Cx. quinquefasciatus, whereas the long-lasting insecticidal net (LLIN) only killed 4.5%. With reduced exposure time on the eave tube insert, mortality was still 100% after 2 min, 88% after 1 min, and 44% after 30 s. Mortality following 1 h exposure on 10% beta-cyfluthrin-treated insert was > 80% continuously up to 7 months post-treatment. Data suggest that Cx. quinquefasciatus have a stronger preference for entering a house through the eaves than through windows. Beta-cyfluthrin-treated inserts were able to kill 51% of resistant Cx. quinquefasciatus released within the enclosure. Conclusions: Eave tubes are a novel method for delivery of insecticide to the house. They attract nuisance host-seeking Cx. quinquefasciatus mosquitoes and are as effective in controlling them as they are against pyrethroid-resistant Anopheles gambiae, despite the high level of resistance Cx. quinquefasciatus have developed

    Identification and characterization of Anopheles spp. breeding habitats in the Korhogo area in northern Côte d’Ivoire: a study prior to a Bti-based larviciding intervention

    No full text
    Abstract Background Although larviciding may be a valuable tool to supplement long-lasting insecticide nets (LLINs) in West Africa in different ecological settings, its actual impact on malaria burden and transmission has yet to be demonstrated. A randomized controlled trial was therefore undertaken to assess the effectiveness of larviciding using Bacillus thuringiensis israeliensis (Bti) in addition to the use of LLINs. In order to optimally implement such a larviciding intervention, we first aimed to identify and to characterize the breeding habitats of Anopheles spp. in the entire study area located in the vicinity of Korhogo in northern Côte d’Ivoire. Methods We conducted two surveys during the rainy and the dry season, respectively, in the thirty villages around Korhogo involved in the study. In each survey, water bodies located within a 2 km radius around each village were identified and assessed for the presence of mosquito larvae. We morphologically identified the larvae to the genus level and we characterized all of the habitats positive for Anopheles spp. larvae based on a predefined set of criteria. Results Overall, 620 and 188 water bodies positive for Anopheles spp. larvae were sampled in the rainy and the dry season, respectively. A broad range of habitat types were identified. Rice paddies accounted for 61% and 57% of the habitats encountered in the rainy and the dry season, respectively. In the rainy season, edges of rivers and streams (12%) were the second most abundant habitats for Anopheles spp. larvae. More than 90% of the Anopheles spp. breeding habitats were surrounded by green areas. Dams, ponds and drains produced higher numbers of Anopheles spp. larvae per square meter than rice paddies (RR = 1.51; 95% CI: 1.18–1.94; P = 0.0010). The density of Anopheles spp. larvae was significantly higher in habitats surrounded by low-density housing (RR = 4.81; 95% CI: 1.84–12.60; P = 0.0014) and green areas (RR = 3.96; 95% CI: 1.92–8.16; P = 0.0002] than habitats surrounded by high-density housing. Turbid water [RR = 1.42 (95% CI: 1.15–1.76; P = 0.0012) was associated with higher densities of Anopheles spp. larvae. The likelihood of finding mosquito pupae in Anopheles spp. breeding habitats was higher in the dry season (OR = 5.92; 95% CI: 2.11–16.63; P = 0.0007) than in the rainy season. Conclusions Rice paddies represented the most frequent habitat type for Anopheles spp. larvae in the Korhogo area during both the rainy and the dry seasons. Anopheles spp. breeding habitats covered a very large and dynamic area in the rainy season whereas they were fewer in number in the dry season. In this context, implementing a larviciding strategy from the end of the rainy season to the dry season is presumably the most cost-effective strategy

    Anopheles bionomics, insecticide resistance mechanisms, and malaria transmission in the Korhogo area, northern Cote d'Ivoire : a pre-intervention study

    No full text
    A better understanding of malaria transmission at a local scale is essential for developing and implementing effective control strategies. In the framework of a randomized controlled trial (RCT), we aimed to provide an updated description of malaria transmission in the Korhogo area, northern Cote d'Ivoire, and to obtain baseline data for the trial. We performed human landing collections (HLCs) in 26 villages in the Korhogo area during the rainy season (September-October 2016, April-May 2017) and the dry season (November-December 2016, February-March 2017). We used PCR techniques to ascertain the species of the Anopheles gambiae complex, Plasmodium falciparum sporozoite infection, and insecticide resistance mechanisms in a subset of Anopheles vectors. Anopheles gambiae s.l. was the predominant malaria vector in the Korhogo area. Overall, more vectors were collected outdoors than indoors (p < 0.001). Of the 774 An. gambiae s.l. tested in the laboratory, 89.65% were An. gambiae s.s. and 10.35% were An. coluzzii. The frequencies of the kdr allele were very high in An. gambiae s.s. but the ace-1 allele was found at moderate frequencies. An unprotected individual living in the Korhogo area received an average of 9.04, 0.63, 0.06 and 0.12 infected bites per night in September-October, November-December, February-March, and April-May, respectively. These results demonstrate that the intensity of malaria transmission is extremely high in the Korhogo area, especially during the rainy season. Malaria control in highly endemic areas such as Korhogo needs to be strengthened with complementary tools in order to reduce the burden of the disease

    Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae

    No full text
    Abstract Background Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages. Methods The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m2, 1.5 g/m2, and 2 g/m2) was monitored under semi-field conditions using a total of 32 containers comprising 16 that were covered and 16 that were uncovered. Two experiments were conducted using first- and second-instar larvae of Anopheles gambiae, respectively. Results BTBSWAX at 2 g/m2 in covered containers exhibited high emergence inhibition (> 80%) when larvae were exposed from 1st instar on day-6 post-treatment, whereas the emergence inhibition was only 28% in uncovered containers. For larvae exposed from 1st instar on day-12 post-treatment, the emergence inhibition was moderate (70%) in covered containers but was low (< 20%) in uncovered containers. For larvae exposed from 2nd instar on day-10 post-treatment, the emergence inhibition was moderate (31%) in covered containers but was very low (< 10%) in uncovered containers. Moreover, the residual efficacy of BTBSWAX was markedly affected by environmental stresses, including sunlight exposure (Hazard ratio (HR) = 0.12, p < 0.001 and HR = 0.63, p = 0.033 for BTBSWAX at 2 g/m2 against 1st and 2nd instar larvae, respectively). Conclusion These findings emphasize the impact of environmental variables (e.g., sunlight exposure) on the residual efficacy of Bti and Bs biolarvicides in the field. They hence highlight the need to take these factors into account for larvicide formulation development processes. Moreover, studies of the ecology of Anopheles larvae in targeted areas are also crucial for the integration of larval control strategies into malaria transmission plans devised by national malaria control programmes of endemic countries

    Evaluation of the interaction between insecticide resistance-associated genes and malaria transmission in Anopheles gambiae sensu lato in central Côte d'Ivoire

    Get PDF
    BACKGROUND: There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. METHODS: Mosquitoes were captured in 40 villages around Bouaké by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. RESULTS: The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in Bouaké. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81-131.63) for Kdr, and 2.79 (2.17-3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). CONCLUSIONS: Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in Bouaké. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence

    Entomological indicators of malaria transmission prior to a cluster-randomized controlled trial of a 'lethal house lure' intervention in central Côte d'Ivoire

    Get PDF
    BACKGROUND: A study was conducted prior to implementing a cluster-randomized controlled trial (CRT) of a lethal house lure strategy in central Côte d'Ivoire to provide baseline information on malaria indicators in 40 villages across five health districts. METHODS: Human landing catches (HLC) were performed between November and December 2016, capturing mosquitoes indoors and outdoors between 18.00 and 08.00 h. Mosquitoes were processed for entomological indicators of malaria transmission (human biting, parity, sporozoite, and entomological inoculation rates (EIR)). Species composition and allelic frequencies of kdr-w and ace-1R mutations were also investigated within the Anopheles gambiae complex. RESULTS: Overall, 15,632 mosquitoes were captured. Anopheles gambiae sensu lato (s.l.) and Anopheles funestus were the two malaria vectors found during the survey period, with predominance for An. gambiae (66.2%) compared to An. funestus (10.3%). The mean biting rate for An. gambiae was almost five times higher than that for An. funestus (19.8 bites per person per night for An. gambiae vs 4.3 bites per person per night for An. funestus) and this was evident indoors and outdoors. Anopheles funestus was more competent to transmit malaria parasites in the study area, despite relatively lower number tested for sporozoite index (4.14% (63/1521) for An. gambiae vs 8.01% (59/736) for An. funestus; χ2 = 12.216; P  85%), coupled with high malaria transmission pattern, which could guide the use of Eave tubes in the study areas
    corecore