727 research outputs found

    Barkhausen Noise and Critical Scaling in the Demagnetization Curve

    Full text link
    The demagnetization curve, or initial magnetization curve, is studied by examining the embedded Barkhausen noise using the non-equilibrium, zero temperature random-field Ising model. The demagnetization curve is found to reflect the critical point seen as the system's disorder is changed. Critical scaling is found for avalanche sizes and the size and number of spanning avalanches. The critical exponents are derived from those related to the saturation loop and subloops. Finally, the behavior in the presence of long range demagnetizing fields is discussed. Results are presented for simulations of up to one million spins.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials

    Full text link
    The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO2_2) nanoporous materials. Instead of a singular critical point, the distribution of AE energies is stationary and variations in the activity rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that critical failure is suppressed in the AE statistics by dissipation and transient hardening. Some of the critical exponents estimated from the experiments are compatible with mean field models, while others are still open to interpretation in terms of the solution of frictional and fracture avalanche models.Comment: preprint, Main article: 7 pages, 3 figures. Supplementary material included in \anc folder: 6 pages, 3 figure

    Magnetic hysteresis in Ising-like dipole-dipole model

    Full text link
    Using zero temperature Monte Carlo simulations we have studied the magnetic hysteresis in a three-dimensional Ising model with nearest neighbor exchange and dipolar interaction. The average magnetization of spins located inside a sphere on a cubic lattice is determined as a function of magnetic field varied periodically. The simulations have justified the appearance of hysteresis and allowed us to have a deeper insight into the series of metastable states developed during this process.Comment: REVTEX, 10 pages including 4 figure

    Spanning avalanches in the three-dimensional Gaussian Random Field Ising Model with metastable dynamics: field dependence and geometrical properties

    Get PDF
    Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several kinds of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.Comment: 16 pages, 17 figure

    Crackling Noise, Power Spectra and Disorder Induced Critical Scaling

    Full text link
    Crackling noise is observed in many disordered non-equilibrium systems in response to slowly changing external conditions. Examples range from Barkhausen noise in magnets to acoustic emission in martensites to earthquakes. Using the non-equilibrium random field Ising model, we derive universal scaling predictions for the dependence of the associated power spectra on the disorder and field sweep rate, near an underlying disorder-induced non-equilibrium critical point. Our theory applies to certain systems in which the crackling noise results from avalanche-like response to a (slowly) increasing external driving force, and is characterized by a broad power law scaling regime of the power spectra. We compute the critical exponents and discuss the relevance of the results to experiments.Comment: 27 Latex Pages, 14 eps figure

    Overview of (pro-)Lie group structures on Hopf algebra character groups

    Full text link
    Character groups of Hopf algebras appear in a variety of mathematical and physical contexts. To name just a few, they arise in non-commutative geometry, renormalisation of quantum field theory, and numerical analysis. In the present article we review recent results on the structure of character groups of Hopf algebras as infinite-dimensional (pro-)Lie groups. It turns out that under mild assumptions on the Hopf algebra or the target algebra the character groups possess strong structural properties. Moreover, these properties are of interest in applications of these groups outside of Lie theory. We emphasise this point in the context of two main examples: The Butcher group from numerical analysis and character groups which arise from the Connes--Kreimer theory of renormalisation of quantum field theories.Comment: 31 pages, precursor and companion to arXiv:1704.01099, Workshop on "New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", May 25-28, 2015, ICMAT, Madrid, Spai

    On the robustness of scale invariance in SOC models

    Full text link
    A random neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is exactly calculable. The system is critical only at a special point Jc in the coupling parameter space. However, the critical region around this point, where approximate scale invariance holds, is very large, suggesting a mechanism for explaining the ubiquity of scale invariance in Nature.Comment: 6 pages, 4 figures; submitted to Physical Review E; http://link.aps.org/doi/10.1103/PhysRevE.59.496

    Bar-driven Transport of Molecular Gas to Galactic Centers and Its Consequences

    Get PDF
    We study the characteristics of molecular gas in the central regions of spiral galaxies on the basis of our CO(J=1-0) imaging survey of 20 nearby spiral galaxies using the NRO and OVRO millimeter arrays. Condensations of molecular gas at galactic centers with sizescales < 1 kpc and CO-derived masses M_gas(R<500pc) = 10^8 - 10^9 M_sun are found to be prevalent in the gas-rich L^* galaxies. Moreover, the degree of gas concentration to the central kpc is found to be higher in barred systems than in unbarred galaxies. This is the first statistical evidence for the higher central concentration of molecular gas in barred galaxies, and it strongly supports the theory of bar-driven gas transport. It is most likely that more than half of molecular gas within the central kpc of a barred galaxy was transported there from outside by the bar. The supply of gas has exceeded the consumption of gas by star formation in the central kpc, resulting in the excess gas in the centers of barred systems. The mean rate of gas inflow is statistically estimated to be larger than 0.1 - 1 M_sun/yr. The correlation between gas properties in the central kpc and the type of nuclear spectrum (HII, LINER, or Seyfert) is investigated. A correlation is found in which galaxies with larger gas-to-dynamical mass ratios tend to have HII nuclear spectra, while galaxies with smaller ratios show spectra indicating AGN. Also, the theoretical prediction of bar-dissolution by condensation of gas to galactic centers is observationally tested. It is suggested that the timescale for bar dissolution is larger than 10^8 - 10^10 yr, or a bar in a L^* galaxy is not destroyed by a condensation of 10^8 - 10^9 M_sun gas in the central kpc.Comment: AASTeX, 20 pages, 8 eps figs, ApJ in press (10 Nov. 1999 issue

    Renormalizing the Schwinger-Dyson equations in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory

    Full text link
    In this paper we study the renormalization of the Schwinger-Dyson equations that arise in the auxiliary field formulation of the O(N) ϕ4\phi^4 field theory. The auxiliary field formulation allows a simple interpretation of the large-N expansion as a loop expansion of the generating functional in the auxiliary field χ\chi, once the effective action is obtained by integrating over the ϕ\phi fields. Our all orders result is then used to obtain finite renormalized Schwinger-Dyson equations based on truncation expansions which utilize the two-particle irreducible (2-PI) generating function formalism. We first do an all orders renormalization of the two- and three-point function equations in the vacuum sector. This result is then used to obtain explicitly finite and renormalization constant independent self-consistent S-D equations valid to order~1/N, in both 2+1 and 3+1 dimensions. We compare the results for the real and imaginary parts of the renormalized Green's functions with the related \emph{sunset} approximation to the 2-PI equations discussed by Van Hees and Knoll, and comment on the importance of the Landau pole effect.Comment: 20 pages, 10 figure
    • …
    corecore