1,351 research outputs found

    Spectrum of low energy excitations in the vortex state: comparison of Doppler shift method to quasiclassical approach

    Full text link
    We present a detailed comparison of numerical solutions of the quasiclassical Eilenberger equations with several approximation schemes for the density of states of s- and d-wave superconductors in the vortex state, which have been used recently. In particular, we critically examine the use of the Doppler shift method, which has been claimed to give good results for d-wave superconductors. Studying the single vortex case we show that there are important contributions coming from core states, which extend far from the vortex cores into the nodal directions and are not present in the Doppler shift method, but significantly affect the density of states at low energies. This leads to sizeable corrections to Volovik's law, which we expect to be sensitive to impurity scattering. For a vortex lattice we also show comparisons with the method due to Brandt, Pesch, and Tewordt and an approximate analytical method, generalizing a method due to Pesch. These are high field approximations strictly valid close to the upper critical field Bc2. At low energies the approximate analytical method turns out to give impressively good results over a broad field range and we recommend the use of this method for studies of the vortex state at not too low magnetic fields.Comment: 11 pages, 11 figures; revised version, error in Fig. 6b remove

    Groundstate and Collective Modes of a Spin-Polarized Dipolar Bose-Einstein Condensate in a Harmonic Trap

    Full text link
    We report new results for the Thomas-Fermi groundstate and the quadrupolar modes of density oscillations of a spin- polarized dipolar interacting Bose-Einstein condensate for the case when the external magnetic field is not orientated parallel to a principal axis of a harmonic anisotropic trap.Comment: Final version, published in Physical Review

    Effect of Surface Andreev Bound States on the Bean-Livingston Barrier in d-Wave Superconductors

    Full text link
    We study the influence of surface Andreev bound states in d-wave superconductors on the Bean-Livingston surface barrier for entry of a vortex line into a strongly type-II superconductor. Starting from Eilenberger theory we derive a generalization of London theory to incorporate the anomalous surface currents arising from the Andreev bound states. This allows us to find an analytical expression for the modification of the Bean-Livingston barrier in terms of a single parameter describing the influence of the Andreev bound states. We find that the field of first vortex entry is significantly enhanced. Also, the depinning field for vortices near the surface is renormalized. Both effects are temperature dependent and depend on the orientation of the surface relative to the d-wave gap function.Comment: 4 pages, 3 figures; minor changes; accepted for publication in Phys. Rev. Lett

    Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO

    Get PDF
    We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle tunneling spectra of thin film grain-boundary Josephson junctions made of the electron doped cuprate superconductor LaCeCuO. An applied magnetic field reduces the spectral weight around zero energy and shifts it non-linearly to higher energies consistent with a Doppler shift of the Andreev bound states (ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the onset of superconductivity. These observations strongly suggest that the ZBCP results from the formation of ABS at the junction interfaces, and, consequently, that there is a sign change in the symmetry of the superconducting order parameter of this compound consistent with a d-wave symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys. Rev.

    Charge current in ferromagnet - triplet superconductor junctions

    Full text link
    We calculate the tunneling conductance spectra of a ferromagnetic metal / insulator / triplet superconductor from the reflection amplitudes using the Blonder-Tinkham-Klapwijk (BTK) formula. For the triplet superconductor, we assume one special pp-wave order parameter, having line nodes, and two two dimensional ff-wave order parameters with line nodes, breaking the time reversal symmetry. Also we examine nodeless pairing potentials. The evolution of the spectra with the exchange potential depends solely on the topology of the gap. The weak Andreev reflection within the ferromagnet results in the suppression of the tunneling conductance and eliminates the resonances due to the anisotropy of the pairing potential. The tunneling spectra splits asymmetrically with respect to E=0E=0 under the influence of an external magnetic field. The results can be used to distinguish between the possible candidate pairing states of the superconductor Sr2_2RuO4_4.Comment: 15 pages with 8 figure

    Local density of states at polygonal boundaries of d-wave superconductors

    Full text link
    Besides the well-known existence of Andreev bound states, the zero-energy local density of states at the boundary of a d-wave superconductor strongly depends on the boundary geometry itself. In this work, we examine the influence of both a simple wedge-shaped boundary geometry and a more complicated polygonal or faceted boundary structure on the local density of states. For a wedge-shaped boundary geometry, we find oscillations of the zero-energy density of states in the corner of the wedge, depending on the opening angle of the wedge. Furthermore, we study the influence of a single Abrikosov vortex situated near a boundary, which is of either macroscopic or microscopic roughness.Comment: 10 pages, 11 figures; submitted to Phys. Rev.

    Shadow on the wall cast by an Abrikosov vortex

    Full text link
    At the surface of a d-wave superconductor, a zero-energy peak in the quasiparticle spectrum can be observed. This peak appears due to Andreev bound states and is maximal if the nodal direction of the d-wave pairing potential is perpendicular to the boundary. We examine the effect of a single Abrikosov vortex in front of a reflecting boundary on the zero-energy density of states. We can clearly see a splitting of the low-energy peak and therefore a suppression of the zero-energy density of states in a shadow-like region extending from the vortex to the boundary. This effect is stable for different models of the single Abrikosov vortex, for different mean free paths and also for different distances between the vortex center and the boundary. This observation promises to have also a substantial influence on the differential conductance and the tunneling characteristics for low excitation energies.Comment: 5 pages, 5 figure

    S and D Wave Mixing in High TcT_c Superconductors

    Full text link
    For a tight binding model with nearest neighbour attraction and a small orthorhombic distortion, we find a phase diagram for the gap at zero temperature which includes three distinct regions as a function of filling. In the first, the gap is a mixture of mainly dd-wave with a smaller extended ss-wave part. This is followed by a region in which there is a rapid increase in the ss-wave part accompanied by a rapid increase in relative phase between ss and dd from 0 to π\pi. Finally, there is a region of dominant ss with a mixture of dd and zero phase. In the mixed region with a finite phase, the ss-wave part of the gap can show a sudden increase with decreasing temperature accompanied with a rapid increase in phase which shows many of the characteristics measured in the angular resolved photoemission experiments of Ma {\em et al.} in Bi2Sr2CaCu2O8\rm Bi_2Sr_2CaCu_2O_8Comment: 12 pages, RevTeX 3.0, 3 PostScript figures uuencoded and compresse

    Flood risk management through a resilience lens

    Get PDF
    To prevent floods from becoming disasters, social vulnerability must be integrated into flood risk management. We advocate complementing conventional risk analysis by adopting a resilience lens in which the welfare of different societal groups is considered by adding recovery capacity, impacts of beyond design events, and distributional impacts
    corecore