We calculate the tunneling conductance spectra of a ferromagnetic metal /
insulator / triplet superconductor from the reflection amplitudes using the
Blonder-Tinkham-Klapwijk (BTK) formula. For the triplet superconductor, we
assume one special p-wave order parameter, having line nodes, and two two
dimensional f-wave order parameters with line nodes, breaking the time
reversal symmetry. Also we examine nodeless pairing potentials. The evolution
of the spectra with the exchange potential depends solely on the topology of
the gap. The weak Andreev reflection within the ferromagnet results in the
suppression of the tunneling conductance and eliminates the resonances due to
the anisotropy of the pairing potential. The tunneling spectra splits
asymmetrically with respect to E=0 under the influence of an external
magnetic field. The results can be used to distinguish between the possible
candidate pairing states of the superconductor Sr2RuO4.Comment: 15 pages with 8 figure