1,181 research outputs found

    Short-Term Effects of Biogas Digestates and Pig Slurry Application on Soil Microbial Activity

    Get PDF
    The effect of four biogas digestates (BD-A, BD-B, BD-C, and BD-D) and pig slurry (PS) on soil microbial functions was assessed at application rates corresponding to 0–1120 kg NH4+-N ha−1. At dose corresponding to 140 kg NH4+-N ha−1, 30.9–32.5% of the carbon applied in BD-A, BD-C, and PS was utilized during 12 days, while for BD-B and BD-D corresponding utilization was 19.0 and 16.9%, respectively. All BDs resulted in net nitrogen assimilation at low rates (17.5–140 kg NH4+-N ha−1) but net mineralization dominated at higher rates. PS resulted in net mineralization at all application rates. All residues inhibited potential ammonium oxidation (PAO), with EC50-values ranging between 45 and 302 kg NH4+-N ha−1. Low rates of BDs appeared to weakly stimulate potential denitrification activity (PDA), while higher rates resulted in logarithmic decrease. The EC50-values for PDA were between 238 and 347 kg NH4+-N ha−1. No inhibition of PDA was observed after amendment with PS. In conclusion, biogas digestates inhibited ammonia oxidation and denitrification, which could be an early warning of potential hazardous substances in the digestates. However, this effect can also be regarded as positive, since it may reduce nitrogen losses

    The Role of Magnetic Shear in Reconnection-Driven Flare Energy Release

    Full text link
    Using observations from the Solar Dynamics Observatory's Atmosphere Imaging Assembly and the Ramaty High Energy Solar Spectroscopic Imager, we present novel measurements of the shear of post-reconnection flare loops (PRFLs) in SOL20141218T21:40 and study its evolution with respect to magnetic reconnection and flare emission. Two quasi-parallel ribbons form adjacent to the magnetic polarity inversion line (PIL), spreading in time first parallel to the PIL and then mostly in a perpendicular direction. We measure magnetic reconnection rate from the ribbon evolution, and also the shear angle of a large number of PRFLs observed in extreme ultraviolet passbands (\lesssim1 MK). For the first time, the shear angle measurements are conducted using several complementary techniques allowing for a cross-validation of the results. In this flare, the total reconnection rate is much enhanced before a sharp increase of the hard X-ray emission, and the median shear decreases from 60^\circ-70^\circ to 20^\circ, on a time scale of ten minutes. We find a correlation between the shear-modulated total reconnection rate and the non-thermal electron flux. These results confirm the strong-to-weak shear evolution suggested in previous observational studies and reproduced in numerical models, and also confirm that, in this flare, reconnection is not an efficient producer of energetic non-thermal electrons during the first ten minutes when the strongly sheared PRFLs are formed. We conclude that an intermediate shear angle, 40\le 40^\circ, is needed for efficient particle acceleration via reconnection, and we propose a theoretical interpretation.Comment: 19 pages, 10 figure

    Characterization of DNA Sequences that Confer Complement Resistance in \u3ci\u3eLeishmania chagasi\u3c/i\u3e

    Get PDF
    Serial passage of axenically cultured Leishmania chagasi promastigotes results in a progressive diminution in resistance to complement-mediated lysis (CML), whereas high CML resistance is seen in infectious metacyclic promastigotes from the sandfly vector as well as metacyclic-like promastigotes within low-passage cultures at stationary growth phase. As we previously reported, in a screen seeking to identify novel genes involved in CML resistance: (1) a genomic cosmid library derived from DNA of CML-resistant L. chagasi promastigotes was transfected into highpassage (constitutively CML-sensitive) L. chagasi promastigotes; (2) transformants were screened for acquisition of CML-resistance; (3) multiple cosmid-transfectants exhibited partial CML resistance; and (4) the sequence for one of the cosmids (Cosmid 51) was determined. This report extends the analysis of Cosmid 51, and identifies by deletion analysis a subregion of the cosmid insert that is critical to the CML-resistance phenotype of Cosmid 51 transformants. We also report the sequence determination and initial CML-resistance activity of another cosmid that also confers partial resistance to CML

    Characterization of DNA Sequences that Confer Complement Resistance in Leishmania chagasi

    Get PDF
    Serial passage of axenically cultured Leishmania chagasi promastigotes results in a progressive diminution in resistance to complement-mediated lysis (CML), whereas high CML resistance is seen in infectious metacyclic promastigotes from the sandfly vector as well as metacyclic-like promastigotes within low-passage cultures at stationary growth phase. As we previously reported, in a screen seeking to identify novel genes involved in CML resistance: (1) a genomic cosmid library derived from DNA of CML-resistant L. chagasi promastigotes was transfected into high-passage (constitutively CML-sensitive) L. chagasi promastigotes; (2) transformants were screened for acquisition of CML-resistance; (3) multiple cosmid-transfectants exhibited partial CML resistance; and (4) the sequence for one of the cosmids (Cosmid 51) was determined. This report extends the analysis of Cosmid 51, and identifies by deletion analysis a subregion of the cosmid insert that is critical to the CML-resistance phenotype of Cosmid 51 transformants. We also report the sequence determination and initial CML-resistance activity of another cosmid that also confers partial resistance to CML

    Mental distress, alcohol use and help-seeking among medical and business students: a cross-sectional comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress and distress among medical students are thoroughly studied and presumed to be particularly high, but comparative studies including other student groups are rare.</p> <p>Methods</p> <p>A web-based survey was distributed to 500 medical students and 500 business students. We compared levels of study stress (HESI), burnout (OLBI), alcohol habits (AUDIT) and depression (MDI), and analysed their relationship with self-assessed mental health problems by logistic regression, with respect to gender.</p> <p>Results</p> <p>Medical students' response rate was 81.6% and that of business students 69.4%. Business students scored higher on several study stress factors and on disengagement. Depression (OR 0.61, CI<sub>95 </sub>0.37;0.98) and harmful alcohol use (OR 0.55, CI<sub>95 </sub>0.37; 0.75) were both less common among medical students. However, harmful alcohol use was highly prevalent among male students in both groups (medical students 28.0%, business students 35.4%), and among female business students (25.0%). Mental health problems in need of treatment were equally common in both groups; 22.1% and 19.3%, respectively, and was associated with female sex (OR 2.01, CI<sub>95 </sub>1.32;3.04), exhaustion (OR 2.56, CI<sub>95 </sub>1.60;4.10), lower commitment to studies (OR 1.95, CI<sub>95 </sub>1.09;3.51) and financial concerns (OR 1.81 CI<sub>95 </sub>1.18;2.80)</p> <p>Conclusions</p> <p>Medical students may not be more stressed than other high achieving student populations. The more cohesive structure of medical school and a higher awareness of a healthy lifestyle may be beneficial factors.</p

    BIOHYBRID – Biohybrid templates for peripheral nerve regeneration

    Get PDF
    [Excerpt] Peripheral nerve injuries represent a major cause for morbidity and disability in affected patients and cause substantial costs for society in a global perspective. It has been estimated that peripheral nerve injuries affect 2.8% of trauma patients,many of whom acquire life-long disability (Noble et al., 1998). With respect to an incidence of nerve injuries of 13.9/100,000 inhabitants per year (Asplund et al., 2009) and the number of inhabitants in the EU (495,000,000 inhabitants in 2007), the number of peripheral nerve injuries requiring repair and reconstruction, excluding nerve injuries by amputations, may be 70,000 annually only in EU countries. Related to peripheral nerve injuries, the costs for society are substantial and consist of direct (costs for surgery, outpatient visits and rehabilitation) and indirect (lost production) costs. Individual median and ulnar nerve injuries in the forearm have total costs of EUR 51,000 and 31,000, respectively, where around 85% of the costs consist of loss of production (Rosberg et al., 2005), still excluding costs for adjusted quality of life ( Eriksson et al., 2011) . Thus, one may estimate that the annual costs only in the EU may be as high as EUR 2.2 billion, indicating that improved treatment strategies for peripheral nerve injuries may not only improve the situation for patients, but may also significantly reduce costs for society. [...](undefined

    Population changes in Leishmania chagasi promastigote developmental stages due to serial passage

    Get PDF
    Leishmania chagasi causes visceral leishmaniasis, a potentially fatal disease of humans. Within the sand fly vector, L. chagasi replicates as promastigotes which undergo complex changes in morphology as they progress from early stage procyclic promastigotes, to intermediate stage leptomonad and nectomonad promastigotes, and ultimately to terminal stage metacyclic promastigotes that are highly infective to vertebrates. This developmental progression is largely recapitulated in vitro using axenic promastigote cultures that have been passaged only a few times. Within a single passage (which takes about a week), axenic cultures progress from logarithmic to stationary growth phases; parasites within those growth phases progress from stages that do not have metacyclic cell properties to ones that do. Interestingly, repeated serial passage of promastigote cultures will result in cell populations that exhibit perturbations in developmental progression, in expression levels of surface macromolecules (major surface protease, MSP, and promastigote surface antigen, PSA), and in virulence properties, including resistance to serum lysis. Experiments were performed to determine whether there exists a direct relationship between promastigote developmental form and perturbations associated with repeated serial passage. Passage 2 to passage 4 L. chagasi cultures at stationary growth phase were predominately (\u3e85%) comprised of metacyclic promastigotes and exhibited high resistance to serum lysis and high levels of MSP and PSA. Serial passaging 8, or more, times resulted in a stationary phase population that was largely (\u3e85%) comprised of nectomonad promastigotes, almost completely devoid (\u3c2%) of metacyclic promastigotes, and that exhibited low resistance to serum lysis and low levels of MSP and PSA. The study suggests that the loss of particular cell properties seen in cells from serially passaged cultures is principally due to a dramatic reduction in the proportion of metacyclic promastigotes. Additionally, the study suggests that serially passaged cultures may be a highly enriched source of nectomonad-stage promastigotes, a stage that has largely been characterized only in mixtures containing other promastigote forms

    Deciphering functional redundancy in the human microbiome.

    Get PDF
    Although the taxonomic composition of the human microbiome varies tremendously across individuals, its gene composition or functional capacity is highly conserved - implying an ecological property known as functional redundancy. Such functional redundancy has been hypothesized to underlie the stability and resilience of the human microbiome, but this hypothesis has never been quantitatively tested. The origin of functional redundancy is still elusive. Here, we investigate the basis for functional redundancy in the human microbiome by analyzing its genomic content network - a bipartite graph that links microbes to the genes in their genomes. We find that this network exhibits several topological features that favor high functional redundancy. Furthermore, we develop a simple genome evolution model to generate genomic content network, finding that moderate selection pressure and high horizontal gene transfer rate are necessary to generate genomic content networks with key topological features that favor high functional redundancy. Finally, we analyze data from two published studies of fecal microbiota transplantation (FMT), finding that high functional redundancy of the recipient\u27s pre-FMT microbiota raises barriers to donor microbiota engraftment. This work elucidates the potential ecological and evolutionary processes that create and maintain functional redundancy in the human microbiome and contribute to its resilience

    NQO2 is a reactive oxygen species generating off-target for acetaminophen

    Get PDF
    [Image: see text] The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity
    corecore