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ARTICLE

Deciphering functional redundancy in
the human microbiome
Liang Tian1,2,3,4, Xu-Wen Wang 1, Ang-Kun Wu 1,5, Yuhang Fan1,6, Jonathan Friedman 7, Amber Dahlin1,

Matthew K. Waldor 8,9, George M. Weinstock 10, Scott T. Weiss1 & Yang-Yu Liu 1✉

Although the taxonomic composition of the human microbiome varies tremendously across

individuals, its gene composition or functional capacity is highly conserved — implying an

ecological property known as functional redundancy. Such functional redundancy has been

hypothesized to underlie the stability and resilience of the human microbiome, but this

hypothesis has never been quantitatively tested. The origin of functional redundancy is still

elusive. Here, we investigate the basis for functional redundancy in the human microbiome by

analyzing its genomic content network— a bipartite graph that links microbes to the genes in

their genomes. We find that this network exhibits several topological features that favor high

functional redundancy. Furthermore, we develop a simple genome evolution model to gen-

erate genomic content network, finding that moderate selection pressure and high horizontal

gene transfer rate are necessary to generate genomic content networks with key topological

features that favor high functional redundancy. Finally, we analyze data from two published

studies of fecal microbiota transplantation (FMT), finding that high functional redundancy of

the recipient’s pre-FMT microbiota raises barriers to donor microbiota engraftment. This

work elucidates the potential ecological and evolutionary processes that create and maintain

functional redundancy in the human microbiome and contribute to its resilience.
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The human microbiome harbors a plethora of taxa carrying
distinct genes and gene families1, making it functionally
diverse. At the same time however, the human microbiome

is functionally redundant2,3, with many phylogenetically unre-
lated taxa carrying similar genes and performing similar func-
tions4–7. For example, dietary carbohydrates can be metabolized
by either Prevotella (from the phylum Bacteroidetes) or Rumi-
nococcus (from the phylum Firmicutes)8. Short-chain fatty acids
can be produced by multiple common genera including Phasco-
larctobacterium, Roseburia, Bacteroides, Clostridium, Rumino-
coccus, etc9. Bile acids can be modified by bacteria belonging
to Lachnospiraceae, Clostridiaceae, Erysipelotrichaceae, and
Ruminococcaceae10. Interleukin secretion can be promoted by
Sutterella, Akkermansia, Bifidobacterium, Roseburia, and Faeca-
libacterium prausnitzii11,12. Moreover, several metagenomic stu-
dies have reported that the carriage of microbial taxa varies
tremendously within healthy populations, whereas microbiome
gene compositions or functional profiles remain remarkably
conserved across individuals1,13–16. Despite the functional varia-
tions and microbial gene diversity that have been uncovered
through refined computational metagenomic processing17 and
meta-analysis18, the highly conserved functional profiles across
individuals imply significant functional redundancy (FR) in the
human microbiome.

It has been suggested that this significant FR underlies the
stability and resilience of the human microbiome in response to
perturbations2,19, but there is little evidence to substantiate this
idea. The origin of the FR observed in the human microbiome is
still not well understood. A paradox has been raised recently,
based on the fact that selection pressures could operate at dif-
ferent levels in the human-microbial hierarchy20, which poten-
tially could drive the FR of the human microbiome in opposite
directions. From the host perspective, although strong FR does
not necessarily imply that the host is regulating the diversity of
microbiota to promote FR21, host-driven or “top-down” selection
would result in a community composed of widely divergent
microbial lineages whose genomes contain functionally similar
suites of genes, leading to high FR within the community. From
the microbial perspective, species with similar genomes (func-
tional capacities) will tend to occupy the same ecological niche
and hence compete with each other. Such competitions between
members of the microbiota would exert “bottom-up” selection
pressure that results in specialized genomes with functionally
distinct suites of genes, leading to high functional diversity (FD)
and low FR within the community. This apparent paradox is
oversimplified, as it doesn’t take into account the spatial structure
and heterogeneous environments inhabited by the human
microbiome. Nevertheless, low FR will tend to arise from widely
divergent microbial lineages with functionally distinct suites of
genes inhabiting the diverse niches within host body sites. On the
other hand, high FR will arise from the presence of a core or
common set of genes, i.e., housekeeping genes, required for
diverse microbes to perform basic cellular functions and/or sur-
vive in the host body site they inhabit.

Here, we investigate whether there is any organizing principle
or assembly rule of the human microbiome that explains the
observed high level of FR. In particular, we constructed the
genomic content network (GCN) of the human microbiome,
which is a bipartite graph connecting microbes to the genes in
their genomes. The GCN provides a full description of the
functional overlap of different microbes in microbial commu-
nities, which enables us to quantify the within-sample FR for any
given human microbiome sample for the first time. Then we
applied tools from network science22 to study the topological
features of the GCN that determine the FR of human microbiome
samples. Furthermore, we developed a simple genome evolution

model that can reproduce all the key topological features of the
GCN. Using this model, we identified key evolutionary and
ecological factors that account for the topological features of the
GCN, and hence revealed the origin of FR in the human
microbiome.

Results
Definition of within-sample FR. Consider a pool of N taxa,
which contains a collection of M genes. The microbial compo-

sition or taxonomic profile pðνÞ ¼ pðνÞ1 ; � � � ; pðνÞN

h i
of a local

community v (i.e., a microbiome sample from a particular body
site of a human subject v) can be directly related to its gene

composition or functional profile f ðνÞ ¼ f ðνÞ1 ; � � � ; f ðνÞM

h i
through

the GCN of the metacommunity (Fig. 1a–c). Here, we define
the GCN as a weighted bipartite graph connecting these taxa
to their genes. The GCN can be represented by an N ×M inci-
dence matrix G= (Gia), where a non-negative integer Gia indi-
cates the copy number of gene a in the genome of taxon-i
(Fig. 1b). The functional profile is given by f ðνÞ ¼ cpðνÞG; where

c ¼ PM
a¼1

PN
i¼1 p

ðνÞ
i Gia

h i�1
is a normalization constant (see

Methods).
A key advantage of GCN is that it enables us to calculate the FR

for each local community, i.e., the within-sample or alpha FR
(hereafter, denoted as FRα). In the ecological literature, the FR of
a local community is often interpreted as the part of its alpha
taxonomic diversity (TDα) that cannot be explained by its alpha
functional diversity (FDα)23–25; i.e.,

FRα � TDα � FDα: ð1Þ
Typically, TDα is chosen to be the Gini-Simpson index:

GSI � 1�
XN
i¼1

p2i ¼
XN
i¼1

XN
j≠i

pipj; ð2Þ

representing the probability that two randomly chosen members
of the local community (with replacement) belong to two
different taxa; and FDα is chosen to be the Rao’s quadratic
entropy

Q �
XN
i¼1

XN
j≠i

dijpipj; ð3Þ

a classical alpha diversity measure that characterizes the mean
functional distance between any two randomly chosen members
in the local community23,24. Here, dij ¼ dji 2 ½0; 1� denotes the
functional distance between taxon-i and taxon-j, which can be
calculated as the weighted Jaccard distance between the genomes
of the two taxa (see Methods and Supplementary Fig. 1 for other
definitions of dij). By definition, dii= 0 for i= 1,…, N. Note that
with TDα=GSI and FDα=Q, we have

FRα ¼
XN
i¼1

XN
j≠i

ð1� dijÞpipj; ð4Þ

naturally representing the functional similarity (or overlap) of
two randomly chosen members in the local community. From Eq.
(4), we can see clearly that FRα of any microbiome sample is
jointly determined by two factors: (1) the functional distances dij’s
among taxa present in the sample, which are predetermined by
the structure of the GCN; and (2) the microbial composition or
taxonomic profile p= [p1,…, pN] of this microbiome sample. Of
course, we can also use other definitions for TDα and FDα, then
the expression of FRα will be different. In particular, we can
consider a parametric class of taxonomic (or functional) diversity
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measures based on Hill numbers26,27. Even in this case FRα of any
microbiome sample is still jointly determined by the structure of
the GCN and the microbial composition of the sample. Also, we
have confirmed that this does not affect our main results
presented below (see Supplementary Sec. 1 and Supplementary
Fig. 2 for details).

The FRα of each local community (or microbiome sample) is
closely related to the system-level FR observed over a collection of
samples. Consider two extreme cases: (i) each taxon is completely
specialized and has its own unique genome (Fig. 1b1), hence
dij= 1 for any i ≠ j. In this case, for each sample we have FDα=
TDα and FRα= 0. The functional profiles vary drastically across
samples (Fig. 1c1). (ii) All taxa share exactly the same genome
(Fig. 1b3), rendering dij= 0 for all i and j. In this case, for each
sample we have FDα= 0 and FRα= TDα. The function profiles
are exactly the same for all samples (Fig. 1c3). These two extreme
scenarios are of course unrealistic. In a more realistic inter-
mediate scenario, the GCN has certain topological features such
that different taxa share a few common functions, but some taxa

are specialized to perform some unique functions (Fig. 1b2). In
this case, the FDα and FRα of each sample can both be high.
Moreover, the functional profiles can be highly conserved across
samples (Fig. 1c2).

Note that the genotype–phenotype mapping is relatively simple
for prokaryotes, which enables us to relate their gene content and
functional capacity. For higher organisms, their gene content and
functional capacity are not simply related, which means that the
GCN framework presented here cannot be simply applied to
study the FR of communities of higher organisms.

A reference GCN. Although the taxonomic profiles of human
microbiome samples are highly personalized, we can construct a
reference GCN based on the pool of human-associated microbes
to quantitatively study the GCN underlying the human micro-
biome. Here we constructed a reference GCN using the Integrated
Microbial Genomes & Microbiomes (IMG/M) database28,
focusing on the Human Microbiome Project (HMP) generated
metagenome datasets29. The IMG/M-HMP database used here
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Fig. 1 Structure of the genomic content network is crucial for determining the functional redundancy and functional diversity of microbial
communities. Here we use hypothetical examples to demonstrate this point. a The taxonomic profiles vary drastically across many local communities (i.e.,
microbiome samples from different individuals). b Genomic content networks are bipartite graphs that connect taxa to the genes in their genomes.
The left-hand side nodes (circles) represent different taxa and the right-hand side nodes (squares) represent different genes. The edge weight represents
the gene copy number. b-1 Each taxon has a unique genome. b-2 Different taxa share a few common genes, some taxa are specialized to have some unique
genes. b-3 All taxa share exactly the same genome. c For each microbiome sample, its functional profile can be calculated from its taxonomic profile in
a and the genomic content network in b. c-1 The functional profiles vary drastically across different microbiome samples. For each sample, the functional
diversity is maximized while the functional redundancy is minimized. c-2 The functional profiles are highly conserved across different samples. The within-
sample functional diversity and functional redundancy are comparable. c-3 The functional profiles are exactly the same across all different microbiome
samples. For each sample, the functional diversity is minimized while the functional redundancy is maximized.
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includes in total 1555 strains and 7210 KEGG Orthologs (KOs)
(see Supplementary Sec. 2.1.1 for details). Here, each KO is a
group of genes representing functional orthologs in molecular
networks30. In order to reduce the culturing and sequencing bias
for certain species (e.g., Escherichia coli), we randomly chose a
representative strain (genome) for each species, which results in a
reference GCN of 796 species and 7105 KOs. This reference GCN
is depicted in Fig. 2a as a bipartite graph, where for visualization
purposes each taxon node represents an order and each function
node represents a KEGG super-pathway.

In order to characterize the structure of this reference GCN, we
systematically analyzed its network properties at the species-KO
level. We first visualized its incidence matrix (Fig. 2b), where the
presence (or absence) of a link connecting a species and a KO is
colored in yellow (or blue), respectively. We noticed that this
matrix displays a highly nested structure31–33, i.e., the KOs of
those species in the lower rows (with smaller genome size) tend to
be subsets of KOs for those species in the higher rows (with larger
genome size). The nestedness of the GCN can be quantified using
the classical NODF measure32, and turns out to be much higher
than expected by chance. (See Methods and Supplementary
Figs. 3, 5, 8 for details.) We then calculated the functional
distances among different species, finding a unimodal distribu-
tion with the peak centered around 0.7 (Fig. 2c). Finally, the
unweighted degree distributions of taxon nodes (species) and
function nodes (KOs) were calculated. Here, the unweighted
degree of a species is just the number of distinct KOs in its

genome, and the unweighted degree of a KO is the number of
species whose genomes contain this KO. We found that the
unweighted degrees of species follow a Poisson-like distribution
(Fig. 2d), implying that in general, species contain very similar
numbers of distinct KOs. By contrast, the unweighted degree
distribution of KOs is highly heterogeneous and displays a fat tail
(Fig. 2e), indicating that most KOs are specialized and only exist
in the genomes of very few species, and a few housekeeping KOs
appear in almost every species’ genome to maintain basic cellular
functions. (Note that these housekeeping KOs also appear as the
leftmost yellow columns in the incidence matrix shown in
Fig. 2b.) This is consistent with the characteristic asymmetrical
U-shape observed in the gene frequency distributions of
prokaryotic pangenomes34,35. Analyses of the reference GCN
constructed by using other genome annotation, e.g., Clusters of
Orthologous Groups of proteins (COGs)36, or constructed from a
different database (MBGD: Microbial Genome Database for
Comparative Analysis)37 revealed very similar network properties
(Supplementary Fig. 3) and did not affect our main results
presented below (Supplementary Fig. 4).

The highly nested structure of the reference GCN is intriguing.
This structure cannot be simply accounted for by housekeeping
genes or the U-shape gene degree distribution. First, as shown in
Fig. 2b, the incidence matrix of the GCN still displays a highly
nested structure even in the absence of housekeeping genes (the
leftmost yellow columns). Second, if we randomize the GCN but
preserve the gene degree distribution, the randomized GCNs have
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Fig. 2 The genomic content network (GCN) constructed from the Integrated Microbial Genomes and Microbiome (IMG/M) database has nested
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(HMP) generated metagenome data sets29 to construct the GCN. a For visualization purpose, we depict this reference GCN at the order level for taxon
nodes and at the KEGG super-pathway level for function nodes. The bar height of each order corresponds to the average genome size of those species
belonging to that order. The thickness of a link connecting an order and a KEGG super-pathway is proportional to the number of KOs that belong to that
super-pathway, as well as the genomes of species in that order. The majority of the super-pathways shown here are related to the metabolic,
environmental, and genetic processes performed by microbes. However, for a small number of taxa, as some of their genes have mammalian and/or
human disease orthologs, we also identified several super-pathways involved in human diseases and higher-order organizational systems. See
Supplementary Sec. 2.1 for the details of constructing this reference GCN. b The incidence matrix of this reference GCN is shown at the species-KO level,
where the presence (or absence) of a link between a species and a KO is colored in yellow (or blue), respectively. We organized this matrix using the
Nestedness Temperature Calculator to emphasize its nested structure31. The nestedness value (∼0.34712) of this network is calculated based on the
classical NODF measure32 (see Methods for details). c The probability distribution of functional distances (dij) among different species. The bin size is
0.02. d The unweighted species degree distribution. Here, the unweighted degree of a species is the number of distinct KOs in its genome. e The
unweighted KO-degree distribution. Here, the unweighted degree of a KO is the number of species whose genomes contain this KO.
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much lower nestedness than that of the real GCN (Supplementary
Figs. 3, 5, 8). Third, we adopted tools from statistical physics to
calculate the expected nestedness value and its standard deviation
for an ensemble of randomized GCNs in which the expected
species and gene degree distributions match those of the real
GCN38. We found that the expected nestedness of randomized
GCNs is significantly lower than that of the real GCN (one
sample z test yields pvalue= 6.2853 × 10−5, see Methods for
details).

Within-sample FR calculation based on reference genomes.
Using shotgun metagenomic sequencing data from two large-
scale microbiome studies, the HMP13,39,40 and the MetaHIT
(Metagenomics of the Human Intestinal Tract)1,41, we calculated
the FR of human microbiome samples collected from different
body sites. First, we constructed body site-specific GCNs using
the IMG/M-HMP database (see Supplementary Sec. 2.1.2 for
details). Note that the body site-specific GCNs display similar
network properties as the global reference GCN constructed from
the IMG/M-HMP database (Supplementary Fig. 5). To remove
the potential impact of body site-dependent TDα on the calcu-
lated FRα, we computed the normalized FRα (i.e., nFRα≡ FRα/
TDα) for these samples. Interestingly, we found that in both HMP
and MetaHIT studies and for most body sites nFRα ~ 0.4 (Fig. 3a,
b, black boxes), suggesting that FRα and FDα are generally
comparable for human microbiome samples. We also confirmed
that the results are not sensitive to the integrity of the KEGG
database, since nFRα is stable if we randomly remove KOs from
the GCN (Supplementary Fig. 6). Moreover, additional analyses
demonstrated that although housekeeping KOs contribute to
higher FR values, they are not the primary explanation for FR
(Supplementary Fig. 7).

Disentangle impacts of GCN and microbial composition on
FR. As mentioned above, FRα of any microbiome sample is
jointly determined by two factors: (1) the functional distances dij’s
among taxa present in the sample that are predetermined by
the structure of the GCN; and (2) the microbial composition p=
[p1,…, pN] of this sample. Yet, this does not mean mathematically
one can separate the FRα of any microbiome sample into two
independent and additive terms: one is purely contributed by
GCN, and the other is purely contributed by the microbial
composition. Indeed, as shown in Eq. (4) (or Eqs. [S20–S21]),
there is always a term in FRα that involves the multiplication of dij
and pipj (or their respective functions). This term cannot be
separated into two independent and additive expressions of dij
and pipj, respectively. To study which of the two factors plays a
more important role in determining the FRα of microbiome
samples, we have to “disentangle” the impacts of the two factors
on FRα in a more sophisticated way. To achieve that, in the
following two subsections, we introduced two different types of
null models: null-GCN models and null-composition models.

Impact of GCN structure on within-sample FR. To study the
impact of GCN on the within-sample FR of a microbiome sam-
ple, we can fix its microbial composition and then randomize the
GCN. To identify key topological features of the GCN that
determine nFRα, we adopted tools from network science. In
particular, we randomized the body site-specific GCNs using four
different randomization schemes, yielding four different null-
GCN models (see Supplementary Sec. 3.1 for details). Then, we
recalculated nFRα for each sample (Fig. 3a, b, colored boxes),
finding that for all the body sites examined all the four different
null models yield lower nFRα than those calculated from real

body site-specific GCNs (Fig. 3a, b, black boxes). Analyzing the
network properties of those null models (Supplementary Fig. 8),
we found that those randomized GCNs all display lower nest-
edness and higher dij than those of the real GCNs. Thus, the
highly nested structure and low dij of the real GCNs contribute to
the high nFRα values observed in the microbiome samples.
Moreover, for the first two null models (Null-GCN-1 and Null-
GCN-2, where both the highly nested structure and high gene
degree heterogeneity of the real GCN are destroyed), nFRα is
much lower than those of the other two null models (Null-GCN-3
and Null-GCN-4, where the highly nested structure is destroyed,
but the high gene degree heterogeneity is kept). This suggests that
the high gene degree heterogeneity also contributes to the high
nFRα values of those microbiome samples. Hence, the GCN
exhibits at least three different topological features (highly nested
structure, low dij, and heterogeneous gene degree distribution)
that jointly contribute to the high nFRα value of microbiome
samples. We emphasize that these findings do not depend on the
detailed definitions of dij, FRα, FDα, or the functional annotation
of genomes (Supplementary Figs. 1, 2, 4).

Impact of microbial composition on within-sample FR. To
study the impact of microbial composition on the within-sample
FR of a microbiome sample, we can fix the GCN, and then
randomize the microbial composition. In particular, to test if the
microbe assemblages or their abundances play an important role
in determining nFRα, we randomized the taxonomic profiles
using three different randomization schemes, yielding three dif-
ferent null-composition models (see Supplementary Sec. 3.2 for
details). Then, we recalculated nFRα for each sample (Fig. 3c, d,
colored boxes). We found that for each microbiome sample if we
preserve the abundance profile but randomly replace the species
by those present in the species pool (i.e., in the corresponding
body site-specific GCN), the resulting null-composition model
(Null-compostion-1) always yields much lower nFRα than that of
the original sample. This suggests that the species present in each
microbiome sample are not assembled at random, but follow
certain functional assembly rules42. Interestingly, if we randomize
the microbial compositions through random permutation of non-
zero abundance for each sample across different species (Null-
composition-2) or for each species across different samples (Null-
composition-3), those two null models did not always yield much
lower nFRα than that of the original sample. Again, these
observations do not rely on the detailed definitions of dij, FRα,
FDα, or the functional annotation of genomes (Supplementary
Figs. 1, 2, 4). These observations suggest that the assemblage of
microbes plays a more important role than their abundances in
determining the high FR of the human microbiome. We hypo-
thesize that the specific environment (e.g., the host nutrient and
immune state) from which particular microbiome samples were
obtained will tend to select for sets of functions among most or all
inhabitants, at any abundance. This could partially explain why
assemblage or membership matters more than abundances in
determining FR.

Note that, for Null-composition-2 and Null-compoisition-3, the
sample-specific GCN is fixed, whereas for Null-compoisition-1,
the sample-specific GCN is actually different from that of the real
microbiome sample (because species in the sample are randomly
replaced by species from the species pool). But we argue that the
key structure features (e.g., highly nested structure, low 〈dij〉, and
heterogeneous gene degree distribution) are still preserved, even
after the species replacement. In other words, Null-compoisition-1
still preserves the key structure features of the sample-specific
GCN, which also reflect the features of the reference GCN.
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Within-sample FR calculation based on de novo taxonomic
profiling. All the results calculated from shotgun metagenomic
sequencing data presented above are based on taxonomic pro-
filing using existing reference genomes. To test if our findings
could be derived independent of reference genomes, we adopted a
de novo method to perform taxonomic profiling of shotgun

metagenomic sequencing data without using any reference gen-
omes41. This de novo taxonomic profiling method is based on the
binning of co-abundant genes across a series of metagenomic
samples. We applied this method to the human gut microbiome
samples from MetaHIT to construct a GCN (see Supplementary
Sec. 2.2 for details). Notably, we found that this GCN displays
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Fig. 3 Topological features of the genomic content network and the assemblage pattern in the human-associated microbial communities contribute to
the high functional redundancy observed in the human microbiome. Shotgun metagenomic sequencing data from HMP13,39,40 (for six different body
sites: gut, n= 549 samples; anterior nares n= 87 samples; buccal mucosa n= 368 samples; tongue dorsum, n= 418 samples; retroauricular crease, RC,
n= 36 samples; posterior fornix n= 52 samples) and MetaHIT1,41 (for gut, n= 177 samples) were analyzed. See Methods for detailed descriptions of the
two metagenomic data sets. a, b The box plots of the normalized function redundancy (nFRα≡ FRα/TDα) were calculated from the real GCN (black box), as
well as the randomized GCNs (colored boxes) using four different randomization schemes: Complete randomization (Null-GCN-1); Species degree
preserving randomization (Null-GCN-2); KO-degree preserving randomization (Null-GCN-3); Species- and KO-degree preserving randomization (Null-
GCN-4). See Supplementary Sec. 3.1 for details of these randomization schemes. Here the (weighted) degree of a KO is the sum of copy numbers of this
KO in those genomes that contain it, and the (weighted) degree of a species is the sum of copy numbers of those KOs in this species’ genome. c, d The box
plots of normalized function redundancy were calculated from the real microbial compositions (black box), as well as the randomized microbial
compositions (colored boxes) using three different randomization schemes: Randomized microbial assemblage generated by randomly choosing the same
number of species from the species pool but keeping the species abundance profile unchanged (Null-composition-1); randomized microbial abundance
profiles through random permutation of non-zero abundance for each sample across different species (Null-composition-2); randomized microbial
abundance profiles through random permutation of non-zero abundance for each species across different samples (Null-composition-3). See
Supplementary Sec. 3.2 for details of the randomization schemes. Boxes indicate the interquartile range between the first and third quartiles with the
central mark inside each box indicating the median. Whiskers extend to the lowest and highest values within 1.5 times the interquartile range. Statistical
analysis was performed using the two-sided Wilcoxon signed rank test. Significance levels: FDR-corrected p value < 0.05 (*), <0.01(**), <0.001(***),
<0.0001(****); >0.05 (NS, non-significant). See Source data for the exact FDR-corrected p values.
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very similar network properties as the GCN constructed using
reference genomes, i.e., high nestedness, a unimodal functional
distance distribution with a clear peak centered ~0.7, Poisson-like
species degree distribution, and a fat-tailed gene degree dis-
tribution (Supplementary Fig. 9). Using the taxonomic profiles
and the constructed GCN obtained from this method, we further
calculated the normalized FR of real microbiome samples and
compared these values to those calculated from randomized
GCNs or randomized microbial compositions (Supplementary
Fig. 10). We found that all the key findings presented in Fig. 3
can be reproduced, implying that our results do not depend on
the existing reference genomes.

A simple genome evolution model. To gain more biological
insight into the bases of the topological features of the real GCN,
and thus deepen understanding of the origin of FR in the human
microbiome, we developed a simple genome evolution model. In
this model, we explicitly considered selection pressure and the
processes of gene gain and loss, and horizontal gene transfer
(HGT) (Fig. 4a). (See Supplementary Sec. 4 and Supplementary
Figs. 11–13 for details.) To offer a minimal model, we assumed
selection pressure simply favors changes in larger genomes. We
found that with reasonable model parameters all the key topo-
logical features of the real GCN can be reproduced by our simple
model (Fig. 4b–e). Moreover, we found that a high HGT rate is
necessary to generate a GCN with a highly nested structure
(Fig. 4f) and a very heterogeneous gene degree distribution as
observed in the real GCN (Fig. 4g), which are crucial features to
maintain high FR in the human microbiome. As shown in Fig. 4f,
the nestedness (measured by NODF) of the GCN generated by
our model displays a phase-transition like behavior: when the
HGT rate is above certain threshold value, NODF deviates from
zero and increases gradually. Similarly, as shown in Fig. 4g, the
Kullback–Leibler (KL) divergence between the normalized gene
degree distribution of real GCN and that of a simulated GCN also
displays a phase-transition like behavior. When the HGT rate is
above certain threshold value, the KL divergence drops and
becomes very close to zero, implying that the gene degree dis-
tribution of the generated GCN is very similar to that of the real
GCN. These results highlight the importance of HGT in deter-
mining the high FR of the human microbiome. In SI Supple-
mentary Fig. 13, we further demonstrated that both the incidence
matrix of GCN and the functional distance distribution will be
quite different from that observed in the real GCN, if the selection
pressure is zero or too large. This implies that moderate selection
pressure is needed to reproduce key topological features of the
GCN, and consequently favors high FR.

Within-sample FR as a resilience indicator. It has been sug-
gested that the strong FR found in the human microbiome is basis
for the stability and resilience of its response to perturbations2,19.
This hypothesis is largely based on the following consideration.
An ecosystem with higher level of FR will be more resistant to the
addition of new species, because any newly added species will
very likely be functionally similar to certain existing species.
Owing to the Competitive Exclusion Principle43, those newly
added species will fail in the competition with their functionally
similar species, rendering poor engraftment. Although theoreti-
cally reasonable, there is no overwhelming evidence yet to directly
validate this hypothesis using real data.

The GCN-based framework allows us to quantify within-
sample FR and hence quantitatively test this intriguing hypoth-
esis. To demonstrate this promise, we analyzed microbiome data
from two fecal microbiota transplantation (FMT) studies44,45 to
check if the FR level of the recipient’s pre-FMT microbiota is

related to the donor microbiota engraftment. In both studies, to
quantify the extent of donor microbiota colonization after FMT,
shotgun metagenomic sequencing was performed to quantify and
characterize the extent of changes to the structure of the gut
microbiome after FMT44,45. For each individual in the two FMT
studies, we plotted the fraction of donor-specific strains (denoted
as fds) as a function of (1) the time post-FMT (denoted as tpost);
and (2) the TD (FD or FR) of the pre-FMT gut microbiota,
denoted as TDpre (FDpre or FRpre, respectively) (see Fig. 5).
Multiple linear regression with F test revealed significant negative
association between fds and FRpre (or TDpre, but not FDpre) in
both studies. Moreover, the negative association between fds and
FRpre is much stronger than that between fds and TDpre (or
FDpre). These results suggest that high FR of the recipient’s pre-
FMT microbiota raises barriers to donor microbiota engraftment,
presumably reducing FMT efficacy; whereas low FR is expected to
reduce the resilience of the pre-FMT gut microbiota against
external perturbation, potentially facilitating the efficacy of FMT
in restoring a healthy gut microbiota. Despite some limitations
(e.g., the small sample sizes and the potential donor-recipient
compatibility issue), this result is consistent with our hypothesis.
Moreover, it suggests that the FR of the human microbiome may
serve as a resilience indicator in response to perturbations such as
FMT. A more rigorous investigation of FR as a resilience
indicator of the human microbiome warrants more dedicated
clinical studies, which are beyond the scope of this paper.

Discussion
In sum, we developed a GCN-based framework to quantify the
FR of the human microbiome and revealed the origin of FR using
a genome evolution model. The GCN framework enabled us to
directly validate if a strong FR underlies the stability and resi-
lience of the human microbiome in response to perturbations2,19,
such as FMT. This could potentially inform other microbiome-
based therapies such as probiotic administration, if FR can indeed
serve as a residence indicator of the human microbiome in
response to general perturbations. FR has been found in many
other microbial systems as well, e.g., in plant46,47, ocean48, and
soil49,50 microbiomes. Our general, quantitative measure of FR
can also be directly applied to those microbial systems and hence
facilitate a direct test of the hypothesis that there are systematic
differences in FR between free-living and host-associated micro-
bial communities51. More broadly, we anticipate that the GCN
framework will yield new insights into the relationships between
biodiversity and ecosystem function for diverse microbial
communities.

In an ecological network, the importance of a species can be
quantified by measuring the centrality52 of its position in the
network, where nodes represent different species and edges
represent direct ecological interactions between different species
(e.g., parasitism, commensalism, mutualism, amensalism, or
competition)53,54. We emphasize that the GCN defined here is
fundamentally different from the ecological networks in litera-
ture. In the GCN, nodes represent species and genes, and links
represent the presence (and copy number) of a gene in the gen-
ome of a particular species. It is very challenging, if not impos-
sible, to infer inter-species interactions based on the GCN because
there is clear relationship between the genome similarity of dif-
ferent species and their ecological interactions. Similarly, it might
be very challenging to infer species abundance correlation55 or
co-occurrence56,57 simply based on the GCN.

In the current work, our primary goal was to establish the
GCN framework, validate the computation pipeline of within-
sample FR calculation, and explain the high FR observed in the
human microbiome, using cross-sectional shotgun metagenomic
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sequencing data and tools from network science. In future
application of the GCN framework, it should be straight forward
to apply our computational pipeline to ask how within-sample
FR varies with changing environment. Such studies will require
high-quality longitudinal data with changing environmental
factors such as dietary alterations.

Methods
Genomic content network. Consider a metacommunity of N taxa and M genes in
total. Denote the taxonomic profile of a local community (e.g., the microbiome

sample from a particular body site of subject ν) as pðνÞ ¼ ½pðνÞ1 ; � � � ; pðνÞN �, where pðνÞi

is the relative abundance of the ith taxon and
PN

i¼1 p
ðνÞ
i ¼ 1. Denote the gene

composition (or functional profile) of this local community as

f ðνÞ ¼ f ðνÞ1 ; � � � ; f ðνÞM

h i
, where f ðνÞa is the relative abundance of the ath gene and

PM
a¼1 f

ðνÞ
a ¼ 1. The GCN can be represented by an N ×M incidence matrix G=

[Gia], where G ≥ 0 is the copy number of gene-a in the genome of taxon-i. The
GCN naturally connects the taxonomic profile and the functional profile as follow:

f νð Þ ¼ cp νð Þ � G ð5Þ
or equivalently

f νð Þ
a ¼ c

PN
i¼1

p νð Þ
i Gia ð6Þ

for a= 1,…, M. Here c ¼ PM
a¼1

PN
i¼1 p

ðνÞ
i Gia

h i�1
is the normalization constant.

Functional distances measures. In the main text the functional distance dij
between taxon-i and j is calculated as the weighted Jaccard distance between the

Distribution of gene distance

Species degree distribution Gene degree distribution

a Incidence matrix

Gene

S
pe

ci
es

P
(d

ij)
P

(k
ge

ne
)

K
L 

di
ve

rg
en

ce

N
O

D
F

dij

kgenekspecies

qhgtqhgt

h = 0

h = 2
h = 4

Species

Gene loss

Gene gain

HGT

b c

d e

f g

0 500 1000 1500 2000 2500

0

100

200

300

400

500
0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100

100

10-1

10-2

10-3

10-4

101 102 103

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Genes

P
(k

sp
ec

ie
s)

Fig. 4 A simple genome evolution model can generate GCNs that capture key topological features of the real GCN. a Schematic diagram of the genome
evolution model. At each time step t, the genome of a species i (shown in red) randomly chosen with probability proportional to khi will be updated based
on one of the following three events: gene loss, gene gain, and horizontal gene transfer (HGT), with corresponding rates qgl, qgg, qHGT, respectively. Note
that the parameter h≥ 0 representing the selection pressure, and h= 0 corresponds to the case of neutral model. The three rates naturally satisfy qgl+
qgg+ qHGT= 1. During HGT, a gene a from a randomly chosen donor species is randomly selected and then transferred to the genome of species i. During
gene loss, a gene a in the genome of species i is randomly selected and then removed. During gene gain, a new gene is added to the genome of species
i. The initial GCN is a random bipartite graph that consists of 500 species and 200 genes with connection probability 0.8. The total number of evolution
time steps is 5 × 105. b–e The incident matrix of the final GCN (with nestedness value NODF= 0.703), functional distance, species degree and gene degree
distributions with h= 2, qHGT= 0.795, qgg= 0.005, and qgl= 0.2 (See Supplementary Figs. 12, 13 for those topological features with other model
parameters). f The nestedness (quantified by NODF) of the final GCN calculated as a function of HGT rate with different selection pressure h= 0,2,4.
g The Kullback–Leibler (KL) divergence between the normalized gene degree distribution Pð~kgeneÞ of real GCN and that of the simulated GCNs calculated
with different selection pressures and HGT rates as shown in f. Here the normalized gene degree ~kgene � kgene=k

max
gene.
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genomes of the two taxa:

dij ¼ 1�
P

a
min Gia ;Gjað ÞP

a
max Gia ;Gjað Þ : ð7Þ

The reasons why we used the weighted Jaccard distance are twofold: (1) the
genome of each taxon is represented by a vector of gene copy numbers, which are
non-negative integers. Weighted Jaccard distance can naturally measure the
distance between two vectors of non-negative integers. (2) The weighted Jaccard
distance is normalized: dij= 0 indicates that taxon-i and taxon-j share exactly the
same genome; dij= 1 means that they have totally different genomes.

Other distance or dissimilarity measures that satisfy the above conditions can
also be used, such as the correlation distance58,

dcorrij ¼ 1�
P

a
GiaGjaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

a
G2
iað Þ P

a
G2
ja

� �q ð8Þ

or the Sørensen dissimilarity59,

dS�rensenij ¼ 1� 2
P

a
min Gia ;Gjað ÞP

a
Giaþ

P
a
Gja

: ð9Þ
We have checked that our results do not change quantitatively by using

different distance (or dissimilarity) measures (see Supplementary Fig. 1).

Nestedness. As a classical concept in ecology, nestedness characterizes the nested
structure of ecological systems, such as the species-site network (describing the
distribution of species across geographic locations), and the species-species inter-
action networks (e.g., host–parasite, plant–pollinator interactions)32,60–65. Roughly
speaking, an ecological system is said to be nested if the items belonging to
“smaller” elements (e.g., a small island containing few species, or a specialist species
with few interactions) tend to be a subset of the items belonging to “larger” ele-
ments (e.g., a large island containing many species, or a generalist species with
many interacting partners). Mathematically, those ecological systems can be

represented as bipartite graphs with two types of nodes, e.g., sites and species, hosts
and parasites, plants and pollinators, etc. In this work, we focus on the GCN of
microbial communities, which is also a bipartite graph with two types of nodes:
species and genes.

Consider a general bipartite graph with N type-1 nodes and M type-2 nodes.
The structure of this bipartite graph can be represented by its N ×M binary
incidence matrix B= (Bia), where Bia= 1 if there is a link connecting the ith type-1
node and the ath type-2 node, and 0 otherwise. Mathematically, nestedness can be
defined as a property of the incidence matrix B. If there exists a permutation of
rows and columns such that the set of links in row-i contains the links in row-(i+
1), and the set of links in column-a contains those in column-(a+ 1), then B is a
perfectly nested binary matrix. For example, consider the mainland and a series of
islands sorted according to their distances to the mainland. The mainland contains
all the species, the first island has a subset of species in the mainland, the second
island has a subset of species in the first island, etc.

Numerical calculation of nestedness. To quantify and visualize the nested
structure of the incidence matrix, we can use the Nestedness Temperature Cal-
culator (NTC)31 based on the BINMATNESS algorithm66, which also provides a
nestedness measure. But NTC is time consuming for large incidence matrices. In
this work we adopt the classical Nestedness metric based on Overlap and
Decreasing Fill (NODF) to characterize the nested structure of a general bipartite
graph32. Comparing with alternative nestedness measures, NODF reduces potential
bias owing to network size and shape.

For a given bipartite graph (say, the genomic content or species-gene network)
with binary incidence matrix B, the (unweighted) degree of the i th species node is
ki ¼

PM
a¼1 Bia , and the (unweighted) degree of the ath gene node is ka ¼

PN
i¼1 Bia .

The number of common genes shared by the genomes of the ith and the jth species
is given by Pij ¼

PM
a¼1 BiaBja . Similarly, the number of common species that both

the ath and the bth genes appear in their genomes is given by Qij ¼
PN

i¼1 BiaBja .
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Fig. 5 Functional redundancy of recipient’s pre-FMT microbiota strongly affects the engraftment of donor microbiota. Analysis of two published FMT
studies: a–c Li et al., Science (2016), where each of the five patients with metabolic syndrome (represented by different symbols/colors) received a single
FMT from one of three donors44; d–f Smillie et al., Cell Host & Microbe (2018), where each of the 19 patients with recurrent C. difficile infection
(represented by different symbols/colors) were treated with FMT from one of four donors45. For each patient, we calculated: a, d the taxonomic diversity
(TD) using the Gini-Simpson index; b, e the functional diversity (FD) using Rao’s quadratic entropy; and c, f the functional redundancy (FR= TD-FD) of his/
her pre-FMT gut microbiota, and the fraction of donor-specific strains at different time points post-FMT. We then performed multiple linear regression
of the fraction of donor-specific strains as the response on TD (or FD, FR) of recipient’s pre-FMT microbiota and the days post-FMT as the predictors.
P values were calculated from F test.
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Define ~Pij ¼ 0 if ki= kj, and ~Pij ¼ Pij=minðki; kjÞ otherwise. Similarly, ~Qab ¼ 0 if

ka ¼ kb , and ~Qab ¼ Qab=min ka; kbð Þ otherwise. The NODF measure is defined as
follows:

NODF ¼
PN

i<j
~Pij þ

PM
a<b

~Qab

N N�1ð Þ
2 þ M M�1ð Þ

2

: ð10Þ

Theoretical analysis of nestedness. To theoretically analyze the nested struc-
ture of a given bipartite graph, one can construct a grand canonical ensemble for
this bipartite graph under the constraint that, for the two types of nodes, the
degree sequences in the ensemble match on average the empirical ones67. This
theoretical approach has two big advantages. First, constraining the ensemble’s
mean degree sequence to be equivalent to the empirical one limits the possible
effects of noisy data, hence possible missing (false negative) or overrated (false
positive) links can be dealt with appropriately. Second, for this bipartite graph
ensemble one can analytically derive the mean and standard deviation of the
distribution of any network property (such as the classical NODF measure of
nestedness) that can be analytically formulated in terms of the elements of the
bipartite adjacency matrix B.

We applied this approach to the reference GCN shown in Fig. 2. We found that
the expected nestedness of the grand canonical ensemble of randomized GCNs is
0.340581 (with standard deviation 0.001634), which is significantly lower than that
of the real GCN (0.34712). One sample z test yields p value= 6.2853 × 10−5. This
indicates that nestedness of the real GCN is an irreducible feature, which cannot be
fully determined by the degree sequence of species and genes in the GCN.

Microbiome data sets analyzed in this paper. The microbiome data analyzed in
this work are all from published studies. The original experiments and corre-
sponding power analysis have been reported in previous publications. (1)
HMP13,39,40. We analyzed the shotgun metagenomic sequencing data of the human
microbiome samples from HMP. We focused on six body sites in five areas: the gut
(one site: stool (549 samples)); the nasal cavity (one site: anterior nares (87 sam-
ples)); the oral cavity (two sites: buccal mucosa (368 samples) and tongue dorsum
(418 samples)); the skin (one site: retroauricular crease (36 samples)); the vagina
(one sites: posterior fornix (52 samples)). (2) Metagenomics of the Human
Intestinal Tract (MetaHIT)1,41. We analyzed the shotgun metagenomic sequencing
data of fecal samples from 177 healthy adults from MetaHIT. (3) FMT study of Li
et al.44 A cohort of five subjects (metabolic syndrome patients) received a single
allogenic FMT from one of three lean donors unrelated to the recipients. Stool
samples were collected from the donors (three samples) and five recipients before
FMT (five samples) and after FMT at the 2nd, 14th, 42nd, and 84th days
(20 samples). (4) FMT study of Smillie et al.45 The cohort consist of 19 recurrent C.
difficile patients. Feces from one of four donors were transplanted to each patient.
Stool samples were collected from the donors (six samples) and the recipients
before FMT (19 samples), and in follow-up visits ranging from 1 day to 4 months
after FMT (40 samples). For FR calculation with reference genomes, samples with
less than five strains with known genomes were excluded for analysis. For FR
calculation without reference genomes (de novo method), no data were excluded
(See Supplementary Sec. 2 for details).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The microbiome metagenomic data analyzed in this work are all from published studies:
HMP13,39,40 (Sequence data are available from the HMP DACC, http://hmpdacc.org);
MetaHIT1,41 (Sequence data are available from the European Nucleotide Archive under
the accession code ERP002061); FMT study of Li et al.44 (Sequence data are available
from the European Nucleotide Archive under the accession code PRJEB12357); FMT
study of Smillie et al.45 (Sequence data are available from the European Nucleotide
Archive under the accession code PRJEB23524). The HMP reference genomes are
available from the Integrated Microbial Genomes and Microbiome (IMG/M) database
(https://img.jgi.doe.gov/). The KEGG Orthologs and pathways are available at KEGG
database (https://www.genome.jp/kegg/). The Clusters of Orthologous Groups of
proteins are available at https://www.ncbi.nlm.nih.gov/research/cog-project/. The
MicroBial Genome Database is available at http://mbgd.genome.ad.jp/. Example data
analyzed in this work are available at https://github.com/liangtian85/FR. Source data are
provided with this paper.

Code availability
MATLAB Codes (version R2016b) used in this work are available at https://github.com/
liangtian85/FR68.
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