54 research outputs found

    A Ca(V)2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide

    A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    AbstractEpisodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide

    Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking

    Get PDF
    Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by β subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution

    Revisiting Synthesis Model of Sparse Audio Declipper

    Full text link
    The state of the art in audio declipping has currently been achieved by SPADE (SParse Audio DEclipper) algorithm by Kiti\'c et al. Until now, the synthesis/sparse variant, S-SPADE, has been considered significantly slower than its analysis/cosparse counterpart, A-SPADE. It turns out that the opposite is true: by exploiting a recent projection lemma, individual iterations of both algorithms can be made equally computationally expensive, while S-SPADE tends to require considerably fewer iterations to converge. In this paper, the two algorithms are compared across a range of parameters such as the window length, window overlap and redundancy of the transform. The experiments show that although S-SPADE typically converges faster, the average performance in terms of restoration quality is not superior to A-SPADE

    The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1

    Get PDF
    Voltage-gated calcium channel auxiliary α2δ subunits are important for channel trafficking and function. Here, we compare the effects of α2δ-1 and an α2δ-like protein called Cachd1 on neuronal N-type (CaV2.2) channels, which are important in neurotransmission. Previous structural studies show the α2δ-1 VWA domain interacting with the first loop in CaV1.1 domain-I via its metal ion-dependent adhesion site (MIDAS) motif and additional Cache domain interactions. Cachd1 has a disrupted MIDAS motif. However, Cachd1 increases CaV2.2 currents substantially (although less than α2δ-1) and increases CaV2.2 cell surface expression by reducing endocytosis. Although the effects of α2δ-1 are abolished by mutation of Asp122 in CaV2.2 domain-I, which mediates interaction with its VWA domain, the Cachd1 responses are unaffected. Furthermore, Cachd1 co-immunoprecipitates with CaV2.2 and inhibits co-immunoprecipitation of α2δ-1 by CaV2.2. Cachd1 also competes with α2δ-1 for effects on trafficking. Thus, Cachd1 influences both CaV2.2 trafficking and function and can inhibit responses to α2δ-1

    Biallelic CACNA2D1 loss-of-function variants cause early-onset developmental epileptic encephalopathy

    Get PDF
    Voltage-gated calcium (CaV) channels form three sub-families (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVβ and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy (DEE). Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly likely representing a null allele, and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface, and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development

    ADAM17 mediates proteolytic maturation of voltage-gated calcium channel auxiliary α2δ subunits, and enables calcium current enhancement

    Get PDF
    The auxiliary alpha(2)delta subunits of voltage-gated calcium (Ca-V) channels are key to augmenting expression and function of Ca(V)1 and Ca(V)2 channels, and are also important drug targets in several therapeutic areas, including neuropathic pain. The alpha(2)delta proteins are translated as pre-proteins encoding both alpha(2) and delta, and post-translationally proteolysed into alpha(2) and delta subunits, which remain associated as a complex. In this study we have identified ADAM17 as a key protease involved in proteolytic processing of pro-alpha(2)delta-1 and alpha(2)delta-3 subunits. We provide three lines of evidence: firstly, proteolytic cleavage is inhibited by chemical inhibitors of particular metalloproteases, including ADAM17. Secondly, proteolytic cleavage of both alpha(2)delta-1 and alpha(2)delta-3 is markedly reduced in cell lines by knockout of ADAM17 but not ADAM10. Thirdly, proteolytic cleavage is reduced by the N-terminal active domain of TIMP-3 (N-TIMP-3), which selectively inhibits ADAM17. We have found previously that proteolytic cleavage into mature alpha(2)delta is essential for the enhancement of Ca-V function, and in agreement, knockout of ADAM17 inhibited the ability of alpha(2)delta-1 to enhance both Ca(V)2.2 and Ca(V)1.2 calcium currents. Finally, our data also indicate that the main site of proteolytic cleavage of alpha(2)delta-1 is the Golgi apparatus, although cleavage may also occur at the plasma membrane. Thus, our study identifies ADAM17 as a key protease required for proteolytic maturation of alpha(2)delta-1 and alpha(2)delta-3, and thus a potential drug target in neuropathic pain

    Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channel via CRMP-2 mediated pathway

    Full text link
    Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport - the translocation domain. Proteins that bind to this domain were identified as alpha-and beta-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway.National Institutes of Health [R01NS067288, R01GM074830]; National Natural Science Foundation of China [81473235, 81020108031]SCI(E)[email protected]
    corecore